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Abstract

Inspired by the beautiful article by Adam Elmachtoub and Charles Van Loan, we take an initial
polygon consisting of n points in the Cartesian plane with centroid at the origin and define an averaging
procedure, generating a new polygon out of the midpoints of each segment that defines the initial polygon.
We perform an analysis of this procedure, corroborating previous results on this procedure when the
polygon is normalized at each step. We also introduce a new averaging procedure suggested by the power
method which also converges to an ellipse but can be in any orientation. We conclude by considering
other averaging procedures and analyze the results that come from these generalizations as well.

1 Introduction

We consider a polygon defined by n points in the plane, where the points are connected in order, possibly
resulting in a non-convex shape with self-intersections. As discussed in [3], which refers to the paper [2],
iterating an averaging procedure on these polygons causes the points to all lie on an ellipse. Numerical
calculations performed using Maple also verify this fact; the points after each step of the iteration converge
to all lie on an ellipse, and the points all converge to the origin. In order to combat this, the authors in [2]
introduce a normalizing procedure to keep the ellipse at a non-zero size so that they can analyze the resulting
ellipse. In particular, they find that for any initial set of points, the result under this procedure is an ellipse
that is tilted at a 45 degree angle from the coordinate axes. However, our initial averaging procedures
resulted in ellipses that were not only tilted at a 45 degree angle, so we set out to perform another analysis
of this procedure.

In this paper, we reconstruct the averaging procedure defined in [2] and analyze the results. We verify
the results presented in that paper following their normalization scheme. After that, we present a new
normalization scheme motivated by the power method of numerical analysis that also serves to retain the
size of the the polygon as the iteration continues, giving a different set of ellipses as possible limiting solutions.
We conclude this paper with further generalizations of the averaging procedure and discover what kind of
limiting shapes can be achieved. In addition to the proofs of these results, Maple code is provided that
iterates these procedures and shows the results.

2 Averaging Polygons

Let P be a polygon in the plane R2, denoted by its set of vertices

{(x0, y0), ..., (xn−1, yn−1)},
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2 AVERAGING POLYGONS

where the vertices are connected in order, with (xn−1, yn−1) connected to (x0, y0). In this definition, the
polygon does not have to be convex, and the edges can self-intersect. By translating the polygon, we will
assume that the centroid is the origin, namely that

n−1∑
i=0

xi = 0 =

n−1∑
i=0

yi.

As discussed in [2], we will consider an averaging process on the vertices of the polygon, which will consist
of constructing a new polygon P̃ from P by defining

x̃i =
1

2
(xi + xi+1), ỹi =

1

2
(yi + yi+1), i = 0, ..., n− 2

and

x̃n−1 =
1

2
(xn−1 + x0), ỹn−1 =

1

2
(yn−1 + y0).

Therefore, if we define the vector x to be the list of x-components of the points and y to be the corre-
sponding y-components, we can see that this iteration is defined by

x̃ = Ax ỹ = Ay

for the matrix

A =



1
2

1
2 0 0 · · · 0

0 1
2

1
2 0 · · · 0

0 0 1
2

1
2 · · · 0

...
...

...
...

. . .
...

1
2 0 0 0 · · · 1

2


,

so that iterating this averaging procedure is equivalent to iterating the matrix A on both the x and y
components of the polygon. Thus, to determine the long-term behavior of this procedure, we should analyze
the eigenvalues and eigenvectors of this matrix A.

Lemma 2.1. The eigenvalues of A are

λk :=
1

2
+
ωk

2
, k = 0, 1, ..., n− 1 where ω = e

2πi
n ,

and the corresponding eigenvector is vk := 1√
n

[1, ωk, ω2k, ..., ω(n−1)k]T for each k = 0, 1, ..., n− 1. This is an

orthonormal set of eigenvectors for this matrix.

Proof. We can write the matrix A as

A =
1

2
I +

1

2
S,

where S is the shift matrix given by

S =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0

 .
By induction, we can prove that the characteristic polynomial of S is λn − 1, so that the eigenvalues are
the nth roots of unity, {ωk}. Futhermore, a simple computation shows the normalized eigenvectors of S are
exactly of the form vk from the statement. Since the identity matrix preserves every vector, we see that
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2 AVERAGING POLYGONS

these vk are still eigenvectors for A, and their corresponding eigenvalues are given by the formula λk above.
We can see that these vectors are orthonormal by noticing that

v0 = v0, vk = vn−k,

and so

vj · vj = vj · vn−j =
1

n
(1 + ωn + ω2n + · · ·+ ω(n−1)n) = 1,

so that each vector has norm 1. They are also orthogonal because the elements in the sum of vj · vk are the
same as the elements of the eigenvector corresponding to vj+n−k mod n, which is zero by the next lemma if
j 6= k.

Lemma 2.2. Let vk be an eigenvector of A for 1 ≤ k ≤ n − 1. Then the sum of the components of vk is
zero.

Proof. If k 6= 0, the elements of vk are all roots of unity, and the components of each vector is a geometric
progression starting with 1 and ωk. Therefore, we can consider the group Zn, integers modulo n under
modular addition, and the subgroup Gk generated by the element k, and the exponents of ω in the vector
vk will be exactly the elements in Gk, appearing in the order given by {0, k, 2k, ...}. If |Gk| = n, then the
elements in vk are exactly the nth roots of unity, and so their sum is zero. If |Gk| < n, then |Gk| = l,
which divides n, and so the elements of vk will correspond to the lth roots of unity, each appearing n

l times.
Therefore, the sum of the elements of vk is the same as n

l times the sum of the lth roots of unity, which is
still zero. Therefore, the sum in each case is zero.

Corollary 2.1. Let w be any vector in Rn. If w is decomposed according to the eigenvectors of A in the
form

w =

n−1∑
k=0

αkvk,

then α0 = 0 if and only if the sum of the components of w is zero.

Proof. Since the sum of the components of vk = 0 for all k > 0, the sum of the components of w is equal to
α0 times

√
n, which is the sum of components of v0.

Theorem 2.1. If P is a polygon with centroid at the origin, then the vectors x and y have a decomposition
of the form

x =

n−1∑
k=1

αkvk y =

n−1∑
k=1

βkvk, (1)

where αk = xTvk and βk = yTvk.

Proof. Since the components of the vectors x and y add to zero, the previous corollary implies that they have
no coefficient on the vector v0. Furthermore, since the {vk} are orthonormal, we can find the coefficients by
taking the dot product with the x or y vectors.

If we look at iterating the matrix A, the power method of numerical analysis [1] tells us that the dominant
component in the limit of Amw is the part with the largest eigenvalue in magnitude. In this case, the
eigenvalue of A with the largest eigenvalue in magnitude has |λ0| = 1, but that eigenvector is not present in
our polygons because they have centroid at the origin. Therefore, we have the following

Lemma 2.3. For each of the vectors x and y from a polygon P with eigenvector decompositions given in
(1), we have that as m→∞,

Amx = |λ1|m
((

λ1
|λ1|

)m
α1v1 +

(
λn−1
|λn−1|

)m
αn−1vn−1 +O

((
|λ2|
|λ1|

)m))
,
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2 AVERAGING POLYGONS

Amy = |λ1|m
((

λ1
|λ1|

)m
β1v1 +

(
λn−1
|λn−1|

)m
βn−1vn−1 +O

((
|λ2|
|λ1|

)m))
.

Proof. If x is of the form in (1), then the vector Amx is given by

n−1∑
i=1

λmi αivi,

and similarly for the y vector. By manipulating this formula, factoring out |λ1|m, we get the formulas above.
In order to get something useful out of the formula, we need to establish that |λ1| = |λn−1| and this is the
largest remaining eigenvalue. Since the eigenvalues of A are of the form

1

2
+
ωk

2

the points in the complex plane corresponding to the λk lie on a circle of radius 1
2 centered at 1

2 . In order to
find the eigenvalues of largest magnitude, we need to look for the ones farthest from the origin, which would
be the ones in which the ωk part of the expression is closest to being real-valued. This corresponds to k = 1
and k = n − 1 because k = 0 is on the real axis, but is not present in our polygons. Furthermore, since λ1
and λn−1 are complex conjugates, they have the same magnitude. Since these have the largest eigenvalue,
the big-O term will go to zero as m → ∞, and so the above formulas hold and are useful for doing a limit
analysis on this process.

Therefore, if we want to look at the long-term behavior of this iteration process, we need to consider the
eigenvectors v1 and vn−1. Since these correspond to roots of unity, we know that vn−1 = v1. This implies
that if x and y are real vectors with eigenvector decomposition given by (1), then we must have αn−1 = α1,
so that

α1v1 + αn−1vn−1 = α1v1 + α1v1 = 2R(α1v1),

and similarly for β1 and βn−1. Since λn−1 = λ1, we can modify Lemma 2.3 to

Lemma 2.4. For each of the vectors x and y from a polygon P with eigenvector decompositions given in
(1), we have that

lim
m→∞

Amx = |λ1|m
(

2R

(
λm1
|λ1|m

α1v1

)
+O

((
|λ2|
|λ1|

)m))
,

lim
m→∞

Amy = |λ1|m
(

2R

(
λm1
|λ1|m

β1v1

)
+O

((
|λ2|
|λ1|

)m))
.

Therefore, the shape corresponding to R(α1v1) and R(β1v1) should have something to do with the
limiting shape of this procedure. We will first analyze this shape, and then prove that this is sufficient for
determining the limiting shape of the entire iterating process.
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2.1 Ellipse Analysis 2 AVERAGING POLYGONS

Consider a complex number z = σ + iτ and the vector v1 as before. Then we have that

R(zv1) = R

(σ + iτ)
1√
n


1
ω
...

ωn−1




=
1√
n
R

(σ + iτ)


cos(0) + i sin(0)

cos
(
2π
n

)
+ i sin

(
2π
n

)
...

cos
(
2π
n

)
+ i sin

(
2π
n

)



=
1√
n
σ


cos(0)

cos
(
2π
n

)
...

cos
(
2π
n

)
− 1√

n
τ


sin(0)

sin
(
2π
n

)
...

sin
(
2π
n

)
 .

Therefore, all of the points of the vector R(zv1) are of the form σ√
n

cos(tj) − τ√
n

sin(tj) for prescribed

values of tj . Applying this to vectors for x and y, we have the following.

Theorem 2.2. Let x̂ = R(α1v1) and ŷ = R(β1v1). Then all points of the form (x̂j , ŷj) lie on the curve
parametrized by

1√
n

(2R(α1) cos(t)− 2I(α1) sin(t), 2R(β1) cos(t)− 2I(β1) sin(t)), 0 ≤ t ≤ 2π.

Lemma 2.5. If R(zv1) is a set of points of the form A cos(tj) + B sin(tj) for real numbers A and B, and
prescribed values of tj, then the set of points given by R(eiφzv1) is of the same form, with the same A and
B, but potentially different values of tj

Proof. If we group the eiφ into the v1 term, we get that

eiφv1 = eiφ


1
ω
...

ωn−1

 =


eiφ

ei(
2π
n +φ)

...

ei(
2π(n−1)

n +φ)

 .
This vector can be split into sine and cosine terms like before, and all that has changed is that the input to
the sine and cosine functions has increase by φ. Carrying the analysis through gives that all of these points
lie on a curve of the same form, but the t values have been shifted up by φ.

Corollary 2.2. The points defined by R(zv1) and R(
(
λ1

|λ1|

)m
zv1) all lie on the curve σ√

n
cos(t)− τ√

n
sin(t).

Therefore the curve defined in the above contains all points in the set of the iterates R(
(
λ1

|λ1|

)m
zv1), in

addition to the points in the vectors x̂ and ŷ.

2.1 Ellipse Analysis

Lemma 2.6. Consider the curve γ(t) given by

(A cos(t) +B sin(t), C cos(t) +D sin(t)), 0 ≤ t ≤ 2π.

Then, assuming AD −BC 6= 0 the curve γ(t) traces out the ellipse given in normal form as

Gx2 +Hxy +Ky2 = 1,
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2.1 Ellipse Analysis 2 AVERAGING POLYGONS

with

G =
D2 + C2

(AD −BC)2
, H =

2BD + 2AC

(AD −BC)2
, K =

A2 +B2

(AD −BC)2
.

Proof. Setting x = A cos(t) +B sin(t) and y = C cos(t) +D sin(t) in the desired form

Gx2 +Hxy +Ky2 = 1

gives an equation involving cos2(t), cos(t) sin(t) and sin2(t). In order to get this to add to 1, we want the
coefficients of cos2(t) and sin2(t) to be 1, and the coefficient of cos(t) sin(t) to be zero. This gives rise to a
linear system of equation of the form A2 AC C2

2AB AD +BC 2CD
B2 BD D2

GH
K

 =

1
0
1

 .
Solving this equation gives the values of G, H and K given above.

Remark. If AD − BC = 0, then we get that the y equation above is a constant multiple of the x equation,
so that the points traced out by γ all lie on a line segment. This will generally not happen if the points are
in general position, so we ignore this case.

Lemma 2.7. If the ellipse given by
x2

a2
+
y2

b2
= 1

is rotated by an angle of θ, then the resulting ellipse is given in normal form by the expression(
cos2(θ)

a2
+

sin2(θ)

b2

)
x2 + 2 cos(θ) sin(θ)

(
1

a2
− 1

b2

)
xy +

(
sin2(θ)

a2
+

cos2(θ)

b2

)
y2 = 1.

Proof. Sending x 7→ x cos(θ) − y sin(θ) and y 7→ y cos(θ) + x sin(θ) in the standard equation of the ellipse
and simplifying the expression gives the desired formula.

Remark. (a) The values for θ, a, and b in the above expression can be found by first noting that

tan(2θ) =
H

(G−K)
,

and then using this value of θ to compute

1

a2
=

1

2

(
G+K +

H

sin(2θ)

)
,

1

b2
=

1

2

(
G+K − H

sin(2θ)

)
.

(b) If we assume that a ≥ b, then θ can be any value between 0 and π. However, if we allow either a or
b to be the semi-major axis, then we can restrict θ to lie between 0 and π/2, and the sign of H will
tell us which is the semi-major axis. It turns out to be easier, from a numerical setting, to force a > b
and work from there. This mainly comes from the fact that when computing the inverse tangent, the
result is always between −π2 and π

2 .

(c) This θ is the angle needed to rotate the ellipse back to the standard orientation on the axes. Therefore,
to get the angle that the ellipse was rotated, we need the opposite of the θ from the formula.

(d) The eccentricity of this ellipse can then calculated as

e =

√
1− b

a
.
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3 RENORMALIZATION CONSIDERATIONS

Corollary 2.3. If the curve γ(t) is given by

γ(t) = (A cos(t) +B sin(t), C cos(t) +D sin(t)), 0 ≤ t ≤ 2π,

then γ(t) traces out an ellipse tilted at a 45 degree angle if and only if A2 +B2 = C2 +D2.

Proof. This happens if and only if 2θ = π/2, i.e., if tan(2θ) is undefined, which happens when G = K, as
seen in the formulas above.

Corollary 2.4. Consider the iterated polygon averaging procedure. The limiting curve is an ellipse in all
cases (assuming the points are in general position). This ellipse is tilted at a 45 degree angle if and only if
|α1| = |β1|, where α1 and β1 are defined by the eigenvector expansions (1) for the initial vectors x and y.

Proof. In our setup for the iterating procedure without normalization (normalzation will be discussed in the
next section), |α1|2 = 4

n (A2 + B2) and |β1|2 = 4
n (C2 + D2). Therefore, A2 + B2 = C2 + D2 if and only if

|α1| = |β1|. The result then follows from the previous corollary.

3 Renormalization Considerations

Since |λ2| < 1, we see that the averaging process applied to any polygon will converge to the origin, since
both vectors x and y will go to zero. In order to visualize and control this process, we want to renormalize
the vectors to get something that stays bounded. We will consider two methods of doing this, one described
in [2] and another of our own design.

3.1 2-norm Normalization

In [2], the authors use an iteration process similar to ours. However, after each step of multiplying by the
matrix A, they normalize both the x and y vectors to be of unit length. If x and y can be written in the
form (1), then this process becomes

x̃ =
Ax

‖Ax‖2
=

∑n−1
i=1 λiαivi(∑n−1

j=1 |λjαj |2
)1/2 , ỹ =

Ay

‖Ay‖2
=

∑n−1
i=1 λiβivi(∑n−1

j=1 |λjβj |2
)1/2 .

If we, with motivation from the power method, factor a |λ1| from the numerator and denominator, we get

x̃ =

∑n−1
i=1

λi
|λ1|αivi(∑n−1

j=1
1
|λ1|2 |λjαj |

2
)1/2 , ỹ =

∑n−1
i=1

λi
|λ1|βivi(∑n−1

j=1
1
|λ1|2 |λjβj |

2
)1/2 . (2)

In order to determine what happens in the limit, we need to iterate this expression. To simplify notation,
we define x(1) and y(1) as the x̃ and ỹ from the first step of the iteration above. To figure out the next step
of the procedure, we note that the eigenvector decompositions of x(1) and y(1) are given by

x(1) =

n−1∑
i=1

λi
|λ1|αi(∑n−1

j=1
1
|λ1|2 |λjαj |

2
)1/2 vi :=

n−1∑
i=1

α
(1)
i vi, y(1) =

n−1∑
i=1

λi
|λ1|βi(∑n−1

j=1
1
|λ1|2 |λjβj |

2
)1/2 vi :=

n−1∑
i=1

β
(1)
i vi,

7



3.1 2-norm Normalization 3 RENORMALIZATION CONSIDERATIONS

so that a second iteration of this procedure gives

x(2) =

∑n−1
i=1

λi
|λ1|α

(1)
i vi(∑n−1

j=1
1
|λ1|2 |λjα

(1)
j |2

)1/2

=

∑n−1
i=1

λi
|λ1|

λi
|λ1|

αi(∑n−1
j=1

1
|λ1|2

|λjαj |2
)1/2 vi∑n−1

j=1
1
|λ1|2

∣∣∣∣∣λj λj
|λ1|

αj(∑n−1
k=1

1
|λ1|2

|λkαk|2
)1/2

∣∣∣∣∣
2
1/2

=

∑n−1
i=1

(
λi
|λ1|

)2
αivi(∑n−1

j=1

∣∣∣∣( λj
|λ1|

)2
αj

∣∣∣∣2
)1/2

=

n−1∑
i=1


(
λi
|λ1|

)2
αi(∑n−1

j=1

∣∣∣∣( λj
|λ1|

)2
αj

∣∣∣∣2
)1/2

vi.

Thus, by induction, we can see that

x(m) =

n−1∑
i=1


(
λi
|λ1|

)m
αi(∑n−1

j=1

∣∣∣( λj
|λ1|

)m
αj

∣∣∣2)1/2

vi.

By the same arguments from the power method, we note that as m → ∞, all terms except the ones
corresponding to λ1 and λn−1, the ones with |λi| = |λ1|, will go to zero. Therefore, xm will approach
something of the form

x(m) ≈


(
λ1

|λ1|

)m
α1(∣∣∣( λ1

|λ1|

)m
α1

∣∣∣2 +
∣∣∣(λn−1

|λ1|

)m
αn−1

∣∣∣2)1/2

v1 +


(
λn−1

|λ1|

)m
αn−1(∣∣∣( λ1

|λ1|

)m
α1

∣∣∣2 +
∣∣∣(λn−1

|λ1|

)m
αn−1

∣∣∣2)1/2

vn−1.

However, by our work before, we know that αn−1 = α1, vn−1 = v1 and λn − 1 = λ1. Therefore the two
absolute values in the denominator are the same, and we get that

x(m) ≈


(
λ1

|λ1|

)m
α1(∣∣∣( λ1

|λ1|

)m
α1

∣∣∣2 +
∣∣∣( λ1

|λ1|

)m
α1

∣∣∣2)1/2

v1 +


(
λ1

|λ1|

)m
α1(∣∣∣( λ1

|λ1|

)m
α1

∣∣∣2 +
∣∣∣( λ1

|λ1|

)m
α1

∣∣∣2)1/2

v1

≈ 2R


(
λ1

|λ1|

)m
α1v1

√
2
∣∣∣( λ1

|λ1|

)m
α1

∣∣∣
 = 2R

((
λ1
|λ1|

)m
α1√
2|α1|

v1

)
.

With this calculation, we have proved the following:

Theorem 3.1. Let P be a polygon on n vertices. If the fair averaging procedure is iterated on this polygon,
where the process is rescaled at each step to keep the 2-norm of the x and y vectors to be 1, then the points

8



3.2 Eigenvalue Normalization 3 RENORMALIZATION CONSIDERATIONS

will converge to lying on the ellipse parametrized by

1√
n

(
2R

(
α1√
2|α1|

)
cos(t)− 2I

(
α1√
2|α1|

)
sin(t), 2R

(
β1√
2|β1|

)
cos(t)− 2I

(
β1√
2|β1|

)
sin(t)

)
, 0 ≤ t ≤ 2π,

where α1 and β1 are the coefficients of v1 in the expansions

x =

n−1∑
k=1

αkvk, y =

n−1∑
k=1

βkvk,

in terms of the eigenvectors of the iteration matrix A.

However, in this calculation, we note that the magnitude of the two complex numbers used in the ellipse,
α1√
2|α1|

and β1√
2|β1|

are the same. Thus, by Corollary 2.4, we know that this ellipse will be tilted an angle of

45 degrees, corroborating the results of [2].
To fully confirm their results, we need to relate this back to what they got for the vectors. As in the

power method, we see that as m goes to ∞, the only terms that survive are those with |λi| = |λ1|, namely
λ1 and λn−1. Furthermore, since our vectors are orthonormal, we have that

α1 = xTv1, β1 = yTv1,

so the coefficients we need to analyze are

α′1 =
xTv1

|xTv1|
, β′1 =

yTv1

|yTv1|
.

However, since

v1 =


cos(0) + i sin(0)

cos
(
2π
n

)
+ i sin

(
2π
n

)
...

cos
(
2π
n

)
+ i sin

(
2π
n

)
 ,

and x is a real vector, we have that

xTv1 = x0(cos(0)) + x1

(
cos

(
2π

n

)
− i sin

(
2π

n

))
+ · · ·+ xn−1

(
cos

(
2π(n− 1)

n

)
− i sin

(
2π(n− 1)

n

))
,

from which we can see that

√
nR(xTv1) = x0 cos(0) + x1 cos

(
2π

n

)
+ · · ·+ xn−1 cos

(
2π(n− 1)

n

)
√
nI(xTv1) = −

(
x0 sin(0) + x1 sin

(
2π

n

)
+ · · ·+ xn−1 sin

(
2π(n− 1)

n

))
|xTv1|2 = R(xTv1)2 + I(xTv1)2.

To match with the notation in [2], we have that cTx(0) = R(xtv1) and sTx(0) = −I(xTv1). Therefore,
this result we see here is exactly the same as what was concluded in the previous paper.

3.2 Eigenvalue Normalization

In this paper, we present a new method of normalization for the iterated polygon problem, one that still
allows the limiting ellipse to be visualized, but allowing the process to achieve any orientation of the final
ellipse. To do this, we consider the same averaging process as before

x(m) = Ax(m−1), y(m) = Ay(m−1),
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but instead of renormalizing the vectors x(m) and y(m) to have norm 1, we instead multiply them by
1
|λ1| where |λ1| is the second largest eigenvalue of A in magnitude. If we look back to the power method

calculations from the first section, we see that this iterative procedure will result in a limit as m→∞ of

Amx =

((
λ1
|λ1|

)m
α1v1 +

(
λn−1
|λn−1|

)m
αn−1vn−1 +O

(
|λ2|
|λ1|

m))
,

and similarly for y. Therefore, by following through the rest of the results in the previous section, we have
proved the following:

Theorem 3.2. Let P be a polygon on n vertices. If the fair averaging procedure is iterated on this polygon,
where the process is rescaled at each step by multiplying by the inverse magnitude of the second largest
eigenvalue, then the points will converge to lying on the ellipse parametrized by

1√
n

(2R(α1) cos(t)− 2I(α1) sin(t), 2R(β1) cos(t)− 2I(β1) sin(t)), 0 ≤ t ≤ 2π,

where α1 and β1 are the coefficients of v1 in the expansions

x =

n−1∑
k=1

αkvk, y =

n−1∑
k=1

βkvk,

in terms of the eigenvectors of the iteration matrix A.

4 Other Extensions

In this section, we look at a generalization of this averaging procedure, where instead of taking the fair
average of two consecutive points, we take a weighted average of any number of consecutive points on the
polygon.

Definition 4.1. Let n be a natural number, and pick η0, ..., ηn−1 real numbers so that

ηi ≥ 0 ∀i
n−1∑
i=0

ηi = 1

Then, we define the η-averaging process on a polygon P with n vertices by, for each vertex (xi, yi), the next
vertex (x̃i, ỹi) is given by

x̃i = η0xi + η1xi+1 + · · ·+ ηn−1xi+n,

and similarly for ỹ, where all of the addition in subscripts is taken modulo n, i.e., xn+1 refers to x1 etc.

For a given vector η of values in the definition, we can define an iteration matrix Aη for this process as

Aη =


η0 η1 η2 η3 · · · ηn
ηn η0 η1 η2 · · · ηn−1
ηn−1 ηn η0 η1 · · · ηn−2

...
...

...
...

. . .
...

η1 η2 η3 η4 · · · η0

 ,

and as before, the new set of vertices of the polygon is given by x̃ = Aηx and ỹ = Aηy. From this, we can
easily see that the vector (1/2, 1/2, 0, 0, ..., 0) corresponds to the original averaging process. As before, from
the eigenvalue calculations, we can write

Aη = η0I + η1S + · · ·+ ηn−1S
n−1.
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Lemma 4.1. The eigenvectors of Aη are the set {vi}, the same as the eigenvectors of S, and the corre-
sponding eigenvalues are given

λk = η0 + η1ω
k + η2ω

2k + · · ·+ ηn−1ω
(n−1)k.

Theorem 4.1. Given an averaging vector η the corresponding procedure, with proper rescaling, converges to
an ellipse in the same manner as the standard averaging procedure.

Proof. Given the conditions of the problem and the restrictions placed on the vector η, (1, 1, 1, ..., 1) is still
an eigenvector of the matrix Aη with eigenvalue 1, and all of the remaining eigenvalues have magnitude
strictly less than 1. If we assume that there exists a k so that

1 > |λk| = |λn−k| > |λj | ∀j 6= 0, k, n− k,

then the analysis from the power method carries through exactly as in the previous part. If we have this
leading eigenvalue, then we see that, as before, the points converge to lie on the ellipse defined by the
corresponding eigenvector.

4.1 Weighted Averages

The simplest generalization of the standard procedure is taking a weighted average of two points on the
polygon. For this, we let the vector η = (ξ, 1− ξ, 0, 0, ..., 0) so that the matrix Aη is given by

Aη =


ξ 1− ξ 0 0 · · · 0
0 ξ 1− ξ 0 · · · 0
0 0 ξ 1− ξ · · · 0
...

...
...

...
. . .

...
1− ξ 0 0 0 · · · ξ

 .
In this case, we know that the eigenvectors are the same {vj} that we had for the fair averaging procedure,

and the corresponding eigenvalues are
λk = ξ + (1− ξ)ωk.

By the same arguments as before, we know that these eigenvalues lie on a circle of radius (1 − ξ) in the
complex plane centered at ξ, so that λ1 and λn−1 are again the largest eigenvalues in magnitude outside of
λ0, so all of the same calculations and results follow through exactly. We then have the equivalent of both
earlier theorems:

Theorem 4.2. Let P be a polygon on n vertices, and let 0 < ξ < 1 be any real number. Define the ξ-
averaging process by applying the matrix Aη to the x and y components of the vertices of the polygons, where
η = (ξ, 1− ξ, 0, ..., 0). If this averaging procedure is iterated on this polygon, where the process is rescaled at
each step to keep the 2-norm of the x and y vectors to be 1, then the points will converge to lying on the
ellipse parametrized by

1√
n

(
2R

(
α1√
2|α1|

)
cos(t)− 2I

(
α1√
2|α1|

)
sin(t), 2R

(
β1√
2|β1|

)
cos(t)− 2I

(
β1√
2|β1|

)
sin(t)

)
, 0 ≤ t ≤ 2π,

where α1 and β1 are the coefficients of v1 in the expansions

x =

n−1∑
k=1

αkvk y =

n−1∑
k=1

βkvk

in terms of the eigenvectors of the iteration matrix A.
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Theorem 4.3. Let P be a polygon on n vertices, and let 0 < ξ < 1 be any real number. Define the ξ-
averaging process by applying the matrix Aη to the x and y components of the vertices of the polygons, where
η = (ξ, 1 − ξ, 0, ..., 0). If this averaging procedure is iterated on this polygon, where the process is rescaled
at each step by multiplying by the inverse magnitude of the second largest eigenvalue, then the points will
converge to lying on the ellipse parametrized by

1√
n

(2R(α1) cos(t)− 2I(α1) sin(t), 2R(β1) cos(t)− 2I(β1) sin(t)), 0 ≤ t ≤ 2π,

where α1 and β1 are the coefficients of v1 in the expansions

x =

n−1∑
k=1

αkvk y =

n−1∑
k=1

βkvk

in terms of the eigenvectors of the iteration matrix A.

5 Maple Packages

This note includes three Maple packages to illustrate the numerics of this method. The first, PolygonHelp,
contains the documentation for the other two files. The second, PolygonSupport, contains the supporting
methods necessary to run the experiment, implementing some linear algebra helper methods for the iteration
and analysis. The last, PolygonProject, which reads the PolygonSupport package, implements the iteration
procedures presented in Sections 2 and 3 and displays the results. The main procedures to run to illustrate
the results here are AnimateConvergence and EllipseProperties, with RandomGoodPoly as the way to
generate a polygon to initialize the process. See the website

http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/polygon.html

for access to the packages.

Acknowledgements

We would like to thank the other students in the Experimental Math Class during Spring 2018, including
Ahsan Khan and Edna Jones, who worked out some of the initial details from this paper during the semester.

References

[1] Kendall Atkinson. An Introduction to Numerical Analysis. Wiley, second edition, 1989.

[2] Adam N. Elmachtoub and Charles F. Van Loan. From random polygon to ellipse: An eigenanalysis.
SIAM Review, 52(1):151–170, 2100.

[3] Charles F. Van Loan. Untangling random polygons and other things. SIAM News, 51, 2018.

12


