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Abstract

In this note, we discuss a modern approach to Lars G̊arding’s 1953 result on the asymptotics of
eigenvalues of elliptic operators. When the paper was originally written, a lot of the estimates and
detailed constructions needed to be done by hand. However, using the modern theory of pseudodifferential
operators, most of these can be abstracted to the general theory, allowing the results to be presented
more concisely and put in a more general context. 1

1 Introduction

The main result that we seek to reprove in this note is presented in [2]. Let a(x,D) be a linear partial
differential operator of order 2m

a(x,D)u(x) =
∑
|α|≤2m

aα(x)Dαu(x)

where Dα = i|α| ∂
|α|

∂xα . We assume that the coefficients aα are smooth in a region T ⊂ Rn which contains our
domain of interest Ω, and that a is elliptic in the sense that

a0(x, ξ) =
∑
|α|=2m

aα(x)ξα

is a positive definite polynomial in ξ for all x ∈ T . We say that λ is a Dirichlet eigenvalue of a for the domain
Ω if there exists a function u ∈ Hm

0 (Ω) so that a(x,D)u = λu. The final result in this paper is that N(λ),
the number of Dirichlet eigenvalues of a less than λ, satisfies

N(λ) ∼ (2π)−nλn/2m
∫∫

a0(x,ξ)<1

dξ dx

As an initial application, consider the operator a = −∆, the standard Laplacian on the domain Ω. For
this operator, the polynomial a0 is a0(x, ξ) = |ξ|2, so that a0(x, ξ) < 1 if and only if ξ is in the unit ball in
Rn. Then, we have that ∫∫

a0(x,ξ)<1

dξ dx =

∫
Ω

dx

∫
B1(0)

dξ = vol(Ω)ωn

Since m = 1 in this case, G̊arding’s result reduces to

N(λ) ∼ (2π)−nλn/2ωnvol(Ω)

which is exactly the Weyl asymptotics of the Dirichlet eigenvalues of the Laplacian. The G̊arding result thus
extends the Weyl asymptotic result to all elliptic operators.

1This was generated for a class in Several Complex Variables, so there may be some flaws in these arguments. I know very
little about pseudodifferential operators and only somewhat understand what parametrices do.
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2 BACKGROUND INFORMATION

This note will seek to be a self-contained discussion of this result. Therefore, Section 2 will discuss the
background material necessary to read the rest of the note. Section 3 will talk about elliptic operators in
general and discuss G̊arding’s previous result that will allow us to discuss the Green’s Function operator,
which serves as the inverse to a differential operator. Section 4 will introduce the basic definitions from
the theory of pseudodifferential operators, focusing on the particular definitions needed for this problem.
Finally, Section 5 will use all of this information to attack G̊arding’s asymptotic estimate.

2 Background Information

2.1 Fourier Transforms

Definition 2.1. The Fourier Transform of a function f is given by

f̂(ξ) = (2π)−n
∫
eix·ξf(x) dx

The inverse formula is given by

ǧ(x) =

∫
e−ix·ξg(ξ) dξ

The following are standard properties of Fourier Transforms. See [1] for the proofs. Note that some of
the notation here may differ from [1], but the results and proofs are still the same.

Proposition 2.1. (a) There is a constant Cn depending only on the dimension so that

||f ||2 = Cn||f̂ ||2

(b) For any multi-index α, we have that D̂αf = ξαf̂ and x̂αf = Dαf̂ where Dα = i|α| ∂
|α|

∂xα .

(c) ∫
f(x)g(x) dx = Cn

∫
f̂(ξ)ĝ(ξ) dξ

(d) If f̂ ∈ L1(Rn), then f is bounded and continuous.

Proof. See [1] for the proofs of parts (a) through (c).

(d) If f̂ is L1, then we can bound

|f(x)| ≤
∫
|e−ix·ξ f̂(ξ)|dξ ≤

∫
|f̂(ξ)|dξ = ||f̂ ||L1

so that f is bounded. Furthermore, since |f(y)| ≤ ||f̂ ||L1 , the Dominated Convergence theorem lets us
pass the limit as y → x through the integral to get that f is continuous.

�

2.2 Sobolev Spaces

Definition 2.2. The Sobolev Hm(Ω) norm of a function f ∈ C∞0 (Ω) is defined as

||f ||2Hm(Ω) :=

∫
Ω

∑
|α|≤m

|Dαf |2 dx

and the corresponding inner product is

〈f, g〉Hm(Ω) :=

∫
Ω

∑
|α|≤m

DαfDαg dx
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2.2 Sobolev Spaces 2 BACKGROUND INFORMATION

Definition 2.3 (Classical Sobolev Spaces). The Sobolev space Hm(Ω) is defined to be the set

Hm(Ω) := {u ∈ L2(Ω) | Dαu ∈ L2(Ω) exists ∀α ≤ m}

The space Hm
0 (Ω) is the closure of C∞0 (Ω) in the Hm(Ω) norm.

Proposition 2.2. The above definition of Hm
0 (Ω) is equivalent to

Hm
0 (Ω) = {u ∈ Hm(Ω) | Dαu = 0 on ∂Ω ∀ |α| < m}

Proof. We can define a trace operator T : H1(Ω) → L2(∂Ω) that is continuous and, for u ∈ C1(Ω̄), Tu =
u |∂Ω. Then, for u in the closure of C∞0 (Ω), there is a sequence un → u where the un ∈ C∞0 (Ω) and the
convergence is in the L2 norm on each derivative. In particular, this implies that Dαum → Dαu in H1(Ω)
for all |α| < m. Thus

T (Dαu) = lim
n→∞

T (Dαun) = 0

For the other direction, we need to use the fact that T (Dαu) = 0 to construct a sequence of smooth functions
that converge to u. The proof can be found in [1]. �

Proposition 2.3. For any f ∈ Hm(Rn), the norms ||f ||Hm(Rn) and ||(1 + |ξ|2)m/2f̂ ||L2(Rn) are equivalent.

Proof. Taking the square of both sides, we can see that

||f ||2Hm(Rn) =
∑
|α|≤m

||Dαf ||2L2(Rn) =
∑
|α|≤m

||ξαf̂ ||2L2(Rn)

and this last sum can be expressed as

||f ||Hm(Rn) =

∫ ∑
|α|≤m

|ξ|2α|f̂ |2 dξ

while the second norm is ∫
(1 + |ξ|2)m|f̂(ξ)|2 dξ

Using the fact that
1

m!
(1 + |ξ|2)m ≤

∑
|α|≤m

|ξ2α| ≤ m!(1 + |ξ|2)m

we easily get equivalence of these two norms. �

As long as ∂Ω is smooth enough, then any function in Hm(Ω) can be extended to one in Hm(Rn) with
a norm bound. Therefore, we can use Fourier Transform methods on functions in Hm(Ω) by first extending
them to all of Rn, using the Fourier Transform, and then restricting back to Ω. The next result uses that
technique.

Proposition 2.4 (Sobolev Interpolation). Let u ∈ Hm(Ω). Then, for any 0 < k < m and any ε > 0, there
exists a constant Cε > 0 so that

||u||Hk(Ω) ≤ ε||u||Hm(Ω) + Cε||u||L2(Ω)

Proof. Consider the function, for any ε > 0

(1 + |ξ|2)k − ε(1 + |ξ|2)m
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3 ELLIPTIC OPERATORS

This function is continuous, and since m > k, goes to −∞ as |ξ| → ∞. Thus, it is bounded from above, and
so there exists a constant Cε so that

(1 + |ξ|2)k ≤ ε(1 + |ξ|2)m + Cε

Then, for any function u ∈ Hm(Rn), we have that

||u||2Hk(Rn) =

∫
Rn

(1 + |ξ|2)k|û(ξ)|2 dξ ≤
∫
Rn

[ε(1 + |ξ|2)m + Cε]|û(ξ)|2 dξ

=

∫
Rn
ε(1 + |ξ|2)m|û(ξ)|2 dξ +

∫
Cε|û|2 dξ = ε||u||2Hm(Rn) + Cε||u||L2(Rn) �

The same result holds on Hm(Ω) by extension.

Proposition 2.5 (Poincaré’s Inequality). Let u ∈ C1
0 (Ω), with Ω bounded. Then there exists a constant

C(Ω, n, p) so that
||u||Lp(Ω) ≤ C||Du||Lp(Ω)

for any 1 ≤ p <∞.

Proof. Since Ω is bounded, there exists a cube [−R,R]n so that Ω ⊂ [−R,R]n. Let x = (x1, x
′) be any point

in Ω. Then since u has compact support in Ω,

|u(x)|p =

∣∣∣∣∫ x

−R

∂u

∂x1
(z, x′) dz

∣∣∣∣p ≤
∣∣∣∣∣
∫ R

−R

∂u

∂x1
(z, x′) dz

∣∣∣∣∣
p

≤ (2R)p/q
∫ R

−R

∣∣∣∣ ∂u∂x1

∣∣∣∣p ≤ (2R)p/q
∫ R

−R
|Du(z, x′)|p

Then we integrate over the entire domain, and pick up another factor of 2R from the x1 integral. �

Corollary 2.1. If u ∈ Hm
0 (Ω), then there exists a constant C(Ω,m) so that

||u||Hm(Ω) ≤ C
∑
|α|=m

||Dαu||L2(Ω)

Proof. Take u ∈ C∞0 (Ω). Since all derivatives of u are at least C1
0 (Ω), Poincaré’s inequality applies, so that

||Dαu||Lp ≤ C||D(Dαu)||Lp

for any α. Applying this inductively gives that we can control any number of derivatives less than m by the
mth order derivatives. The result follows by density of C∞0 (Ω) ⊂ Hm

0 (Ω). �

3 Elliptic Operators

The most general linear partial differential operator of even order 2m has the form

a(x,Dx)u :=
∑
|α|≤2m

aα(x)Dαu

where the α are multi-indices

α = (α1, ..., αn) Dα = i|α|
∂α1

∂xα1
1

· · · ∂
αn

∂xαnn

We say that such an operator is elliptic if the highest order terms satisfy

a0(x, ξ) :=
∑
|α|=2m

aα(x)ξα 6= 0

for all ξ 6= 0 ∈ Rn and all x ∈ Ω. We say it is strictly elliptic if

a0(x, ξ) ≥ c||ξ||2m

for all x ∈ Ω and ξ ∈ Rn.
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3.1 G̊arding’s Inequality 3 ELLIPTIC OPERATORS

3.1 G̊arding’s Inequality

G̊arding’s inequality is a result for elliptic partial differential operators. It gives some very nice results about
the operator, as long as we can add a constant to it.

Definition 3.1. Let a be an elliptic partial differential operator of order 2m. The bilinear form Ba[u, v] on
Hm

0 (Ω) associated to a is an expression of the form

Ba[u, v] =

∫ ∑
|α|,|β|≤m

a′α,β(x)DαuDβv dx

where the coefficient functions a′α,β are chosen so that

Ba[u, v] =

∫  ∑
|α|≤2m

aα(x)Dαu

 v dx

for all u, v ∈ C∞0 (Ω) after integration by parts.

Theorem 3.1 (G̊arding’s Inequality). Let a be an elliptic partial differential operator of order 2m. Let
Ba[u, v] be the bilinear form on Hm

0 (Ω) associated with this operator. Then there exists a constant t0 such
that for all t > t0, there exists a constant c > 0 so that

B[u, u] + t||u||2L2(Ω) ≥ c||u||
2
Hm(Ω)

Proof. We can write Ba[u, u] as

Ba[u, u] =

∫
Ω

 ∑
|α|=2m

aα(x)
∑

β+γ=α
|β|=|γ|=m

DβuDγu

+R(u) dx

where every term in R(u) has, when adding up the number of derivatives on both factors of u, a total number
of derivatives less than 2m. Thus, each term in R(u) has either two factors with strictly less than m, or
one factor with m derivatives and one with strictly less. For terms with lower order derivatives, Sobolev
Interpolation allows us to control

||u||2Hk(Ω) ≤ ε||u||
2
Hm(Ω) + Cε||u||L2(Ω)

for any ε > 0. This, combined with Cauchy Schwartz with ε allows us to take any term that does not have
both derivatives of order m, and control it by a small multiple of ||u||Hm(Ω) plus a large multiple of ||u||L2(Ω)

The highest order term with both derivatives of order m can be bounded from below by c1||u||2Hm(Ω) because

the operator is elliptic, into which we can absorb all of the small ||u||Hm(Ω) terms to get the bound that we
want. �

3.2 Green’s Operators

This result implies that for t large enough, the operator a+ t, adding a tu term to the end of the operator,
is a coercive operator. The Lax-Milgram theorem (which also post-dates this paper) guarantees solutions in
the sense that for any linear functional ` on Hm

0 , there exists a unique u` ∈ Hm
0 so that

at(u
`, v) = `(v) ∀ v ∈ Hm

0 at(u, v) = B[u, v] + t〈u, v〉L2

Defining

`(v) =

∫
vf̄
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3.3 Tauberian Theorem 3 ELLIPTIC OPERATORS

and letting uf denote the corresponding f , we have that

at(u
f , v) = 〈f, v〉

The map f → uf , denoted by Gt acts as an inverse to the differential operator at, in that

〈f, g〉L2 = at(Gtf, g) atGtf = Gtatf = f

Our goal will be to show that this operator has an integral kernel which has nice properties. The main
property we care about is that if λ is an eigenvalue of a, then (λ+ t)−1 will be the corresponding eigenvalue
of Gt. This also works the other way around, that is, having information on the eigenvalues of Gt should
tell us things about the eigenvalues of a.

3.3 Tauberian Theorem

In order to connect information about the series of (λ+t)−1 for λ an eigenvalue of a to the distribution of the
eigenvalues, we need to use a Tauberian theorem. For this we reference the work of Hardy and Littlewood
[3]:

Theorem 3.2 (Theorem 4 [3]). Suppose that f ≥ 0 and f ∈ L1
loc(0,∞) and that

f(x)

(x+ t)ρ
∈ L1(0,∞)

for some (all) t > 0. Suppose further that

h(t) =

∫ ∞
0

f(x) dx

(x+ t)ρ
∼ H

tσ

where 0 < σ < ρ, H > 0 as t→∞. Then

F (x) =

∫ x

0

f(u) du ∼ HΓ(ρ)

Γ(σ)Γ(ρ− σ + 1)
xρ−σ

when x→∞.

However, further work on these types of theorems from Pleijel [4] suggests that these results work on
any measure space, not just standard L1(dx). In order to get something that fits with the results we will
generate later for the eigenvalues, we apply the theorem above with the function f ≡ 1, where the measure
space is taken to be the spectral counting measure, namely

µ([0, λ]) = N(λ)

Theorem 3.3 (Modified Tauberian Theorem). If∑
k

(λk + t)−ρ <∞

and ∑
k

(λk + t)−ρ ∼ H

tσ

then

N(x) =
∑
λ<x

1 =

∫ t

0

f(u) dµ(u) ∼ HΓ(ρ)

Γ(σ)Γ(ρ− σ + 1)
xρ−σ

This theorem gives the explicit connection between the eigenvalues of Gkt and the asymptotics of the
eigenvalues of a.
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4 PSEUDODIFFERENTIAL OPERATORS

4 Pseudodifferential Operators

The last major piece of the puzzle for analyzing G̊arding’s asymptotic result in the modern setting is the
theory of pseudodifferential operators. The introduction here is adapted from the corresponding chapters of
[5].

4.1 Symbol Classes

To start consider a differential operator of the form

p(x,D) =
∑
|α|≤k

aα(x)Dα

By properties of the Fourier Transform, we know that

p(x,D)f(x) = (2π)−n
∫
p(x, ξ)f̂(ξ)eix·ξ dξ (1)

where
p(x, ξ) =

∑
|α|≤k

aα(x)ξα

Therefore, we have that differential operators can be represented by smooth functions p(x, ξ) in the form
given above, where p(x, ξ) is a polynomial in ξ in this case. Pseudodifferential operators are defined in the
same way, but the function p no longer has to be a polynomial in ξ. Instead, p(x, ξ) must belong to a certain
symbol class. The following symbol classes were originally defined by Hörmander:

Definition 4.1. For ρ, δ ∈ [0, 1] and m ∈ R, the symbol class Smρ,δ consists of all C∞ functions p(x, ξ)
satisfying

|Dβ
xD

α
ξ p(x, ξ)| ≤ Cαβ〈ξ〉m−ρ|α|+δ|β|

for all α and β, where 〈ξ〉 = (1 + |ξ|2)1/2. In this case, we say that the operator p(x,D) defined by (1) is in
OPSmρ,δ. p(x, ξ) is said to be the symbol of p(x,D).

Example 4.1. The differential operator from before has a symbol of the form

p(x, ξ) =
∑
|α|≤k

aα(x)ξα

Upon inspection, we can see that
|p(x, ξ)| ≤ C〈ξ〉k

because the highest power present is k. It is clear that derivatives in x have no impact on the growth of
the function, since all of the coefficients aα are smooth, and so all derivatives are bounded on the region
of interest, and derivatives in ξ just reduce the order of growth by 1 power of ξ. Therefore, we have that
operators of this type are in Sk1,0. Therefore, operators in the classes of the form Sm1,0 are of particular
interest, because operators in this class should behave somewhat like normal differential operators.

4.2 Schwartz Kernels of Pseudodifferential Operators

A major result in the area of pseudodifferential operators is the fact that they can be represented by integral
kernels.

Theorem 4.1 (Schwartz Kernels). Let p(x,D) be an operator in OPSmρ,δ. Then, there exists a K ∈ C∞0 (Rn×
Rn)∗ so that

〈K,u(x)v(y)〉L2(R2n) = 〈u, p(x,D)v〉L2(Rn)

for all u and v in C∞0 (Rn).
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4.2 Schwartz Kernels of Pseudodifferential Operators 4 PSEUDODIFFERENTIAL OPERATORS

Proof. See [5] for the full proof. The outline of the proof is as follows:

1. The operator p(x,D) gives rise to a separately continuous bilinear form on C∞(Ω)×C∞(Ω) in the form

B[u, v] = 〈u, p(x,D)v〉

2. Since the form is separately continuous, there exist k and l positive numbers so that

|B[u, v]| ≤ C||u||Hk(Ω)||v||Hl(Ω)

This is done via the Baire Category Theorem because the sequence of norms || · ||Hj characterizes C∞.

3. This fact tells us that p(x,D) maps Hk into H−l, which we can pre- and post-compose with the isomor-
phisms

Λs := Hσ(Ω)→ Hσ−s(Ω) Λ̂su = (1 + |ξ|2)s/2û

to write p(x,D) as an operator from L2 to L2.

4. With the proper choice of exponents, p(x,D) then becomes a Hilbert-Schmidt operator, which has an
integral kernel K(x, y).

5. Use integration by parts to remove the pre- and post-composed factors to get the kernel K of the pseu-
dodifferential operator p(x,D).

�

In order to get a handle on what this K looks like, we unpack the definition

〈u, p(x,D)v〉L2(Rn) = (2π)−n
∫∫

u(x)p(x, ξ)v̂(ξ)eix·ξ dξ dx

= (2π)−n
∫∫∫

u(x)p(x, ξ)v(y)ei(x−y)·ξ dξ dx dy

= 〈K,u(x)v(y)〉

Therefore, the function K can be represented as

K(x, y) = (2π)−n
∫
p(x, ξ)ei(x−y)·ξ dξ (2)

From this, we can prove some easy results on the regularity of this function.

Proposition 4.1. If ρ > 0, then K is C∞ off of the diagonal in Rn × Rn.

Proof. For any α ≥ 0, we have that

(x− y)αK = (2π)−n
∫
ei(x−y)·ξDα

ξ p(x, ξ) dξ (3)

Since p ∈ OPSmρ,δ we know that

|Dα
ξ p(x, ξ)| ≤ Cαβ〈ξ〉m−ρ|α|

which means that |Dα
ξ p(x, ξ)| is L1(Rn) if m−ρ|α| < −n. Therefore, by the properties of Fourier Transform

discussed earlier, (x − y)αK is continuous, so that K is continuous off the diagonal in Rn × Rn. Similarly,
applying j derivatives to (3) will give j extra powers of ξ, meaning we just need to choose α large enough
so that m + j − ρ|α| < −n in order to conclude that (x − y)αK ∈ Cj(Rn × Rn), and thus K is Cj off the
diagonal. Since this holds for all j, K is smooth off the diagonal. �
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5 GÅRDING’S ASYMPTOTICS

Corollary 4.1. If p ∈ OPSmρ,δ with ρ > 0 and m < −n, then K is continuous on all of Rn×Rn and smooth
off the diagonal.

Proof. We follow the same proof as the proposition above. However, if m < −n, then the first part of the
proof will go through with α = 0, so we get that K is continuous without needing to multiply by (x−y). �

Corollary 4.2 (Decay Estimate). If p ∈ OPSmρ,δ with ρ > 0 and k ≥ 0 so that k > 1
ρ (m+ n), then

|K(x, y)| ≤ C|x− y|−k

Proof. By the same argument above, for such a k, we have that (x − y)αK is defined by an absolutely
convergent integral for |α| = k. Therefore (x− y)αK is bounded, and so the desired bound holds. �

These kernels can also be written in the form

K(x, y) = L(x, x− y)

where the function

L(x, z) = (2π)−n
∫
p(x, ξ)eiz·ξ dξ

and by the results before, L is smooth on Rn × (Rn \ {0}) and may be continuous on the whole space
depending on the order m of the operator. This form of the kernel will be more useful later.

5 G̊arding’s Asymptotics

Now, we want to bring all of this theory together to talk about G̊arding’s result. We already know that for
t large enough, the operator at := a + t is invertible with inverse Gt. In order to prove his result, G̊arding
seeks to find an integral kernel for this operator Gt so that he can connect the eigenvalues of a to the trace
of the operator. To follow his argument, we will also find a kernel function, but ours will come from the
theory of pseudodifferential operators.

Consider a, our original elliptic differential operator of order 2m, which can be represented by a pseu-
dodifferential operator with symbol

a(x, ξ) =
∑
|α|≤2m

aα(x)ξα

so that the symbol of the invertible operator at = a+ t is given by

at(x, ξ) =
∑
|α|≤2m

aα(x)ξα + t

Then, we can set t = τ2m and define

bτ0(x, ξ) =
1

τ2m
at(x, τξ) =

∑
|α|≤2m

aα(x)τ |α|−2mξα + 1

so that
b∞0 (x, ξ) =

∑
|α|=2m

aα(x)ξα + 1 = a0(x, ξ) + 1

and we define

pτ (x, ξ) :=
1

bτ0(x, ξ)
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5 GÅRDING’S ASYMPTOTICS

Since a0(x, ξ) ≥ C|ξ|2m by ellipticity, we then have that

p∞(x, ξ) :=
1

b∞0 (x, ξ)
≤ C(1 + |ξ|2)−m = C〈ξ〉−2m

Finally, since b∞0 is a polynomial in ξ, the derivatives in ξ of p∞(x, ξ) will each lower the order by 1.
Therefore, we have that

p∞(x, ξ) ∈ S−2m
1,0

as a pseudodifferential operator. Since all of these bounds are continuous in τ , the fact that p∞ ∈ S−2m
1,0

implies that pτ ∈ S−2m
1,0 for τ large enough. Therefore, for each τ , pτ has an integral kernel Lτ so that

〈u, pτ (x,D)v〉 =

∫∫
Lτ (x, x− y)u(x)v(y) dx dy

where

Lτ (x, z) = (2π)−n
∫
pτ (x, ξ)eiz·ξ dξ

This is similar to the B function that G̊arding forms in his paper, with a shift to put the pole at 0. With
this setup, we have that Lτ is an integral kernel for the inverse operator to bτ0(x,D) because

∫∫
Lτ (x, x− y)bτ0(x,D)u(x)v(y) dx dy =

∫
bτ0(x,D)u(x)pτ (x,D)v(x) dx

=

∫
bτ0(x, ξ)û(ξ)pτ (x, ξ)v̂(ξ) dξ

=

∫
û(ξ)v̂(ξ) = (u, v)L2(Rn)

(4)

where the last line follows by the definition of pτ . In the same way, we would like to find an inverse to the
operator at(x,D). To this end, we define the function ht by

ht(x, z) = τn−2mLτ (x, τz) t = τ2m

and gt(x, y) = ht(x, x− y). In the same sense that Lτ is the integral kernel for the operator pτ , we see that
by change of variables

ht(x, z) = τn−2mLτ (x, τz) = (2π)−nτn−2m

∫
pτ (x, ξ)eτz·ξ dξ

= (2π)−nτn−2m

∫
pτ (x,

τξ

τ
)ez·τξ dξ

= (2π)−n
∫

1

τ2m
pτ

(
x,
η

τ

)
eiz·η dη

that ht is the integral kernel corresponding the operator with symbol τ−2mpτ (x, ξ/τ). Using the definition
of pτ , we then have that

τ−2mpτ (x, ξ/τ) = τ−2m 1

bτ0(x, ξ/τ)
=

1

at(x, ξ)

Therefore, the exact same steps as in (4) give that∫∫
gt(x, y)at(x,D)u(x)v(y) dx dy =

∫∫
ht(x, x− y)at(x,D)u(x)v(y) dx dy = (u, v)L2(Rn)

10
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so that this gt is an integral kernel for the inverse operator Gt to the differential operator at.Therefore, this
gt is the integral kernel for the Green’s operator Gt that G̊arding derives. Now, we just need to prove the
asymptotic part of the result.

If 2m > n, then from the work on pseudodifferential operators we know that the kernel Lτ is continuous
on all of Rn × Rn, which implies that gt is continuous. If 2m < n, then we can consider powers of the
operator at, so that akt will have order 2mk, and choose a k large enough to make this larger than n. In this
case, we define

bτ0(x, ξ) =
1

τ2mk
(at(x, τξ))

k

and the rest of the definitions are adjusted accordingly. Once we have this, the corresponding Green’s

operator Gkt will have continuous integral kernel g
(k)
t . In the case that these kernels are continuous, we can

evaluate both Lτ and gt everywhere, including along the diagonal. Doing this, we see that

Lτ (x, 0) = (2π)−n
∫
pτ (x, ξ) dξ

so that

lim
τ→∞

Lτ (x, 0) = (2π)−n
∫
p∞(x, ξ) dξ = (2π)−n

∫
(a0(x, ξ) + 1)−k dξ

and similarly, we have, for ν = n/2m

lim
t→∞

tk−νgkt (x, x) = lim
t→∞

tk−νhkt (x, 0) = lim
τ→∞

τ2mk−nτn−2mkLτ (x, 0)

= (2π)−n
∫
p∞(x, ξ) dξ = (2π)−n

∫
(a0(x, ξ) + 1)−k dξ

Furthermore, if x 6= y, then

lim
t→∞

tk−νgkt (x, y) = lim
t→∞

tk−νhkt (x, x− y) = lim
τ→∞

Lτ (x, τ(x− y)) = 0

by the decay estimate, which we can concisely write as

lim
t→∞

tk−νg
(k)
t (x, y) = δxy(2π)−n

∫
(a0(x, ξ) + 1)−k dξ

which is the same expression that G̊arding gets to in his paper for the kernel.
Now, we want to restrict to the diagonal terms and integrate this expression over Ω to get that

lim
t→∞

tk−ν
∫

Ω

g
(k)
t (x, x) dx = (2π)−n

∫
Ω

∫
Rn

(a0(x, ξ) + 1)−k dξ dx (5)

which holds by Dominated Convergence because for τ large enough,

tk−νg
(k)
t (x, x) = Lτ (x, 0) = (2π)−n

∫
pτ (x, ξ) dξ

and pτ is bounded by C〈ξ〉−2km which is L1.
Since Gt is self-adjoint and positive, there exists a complete L2-orthonormal system of eigenfunctions φj

for Gt with positive eigenvalues
(λ1 + t)−1 ≥ (λ2 + t)−1 ≥ · · ·

From this, we have that
at(φj , f) = (λj + t)at(Gtφj , f) = (λ+ t)(φj , f)

11
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for any f ∈ Hm
0 (D) Since, for any other s ∈ R,

as(f, g) = a(f, g) + s(f, g) = at(f, g) + (s− t)(f, g)

we can see that if φj is an eigenfunction for Gt, it is also an eigenfunction for Gs for all other s. Thus, we
have that these φj are also eigenfunctions for a in the sense that

aφj = λjφj

Next, we need to show that the kernel function g
(k)
t (x, y) can be decomposed as

g
(k)
t (x, y) =

∑
j

(λj + t)−kφj(x)φj(y)

as long as 2mk > n so that ∫
Ω

g
(k)
t (x, x) dx =

∑
(λj + t)−k = trGkt (6)

We know that
∫
S
|g(k)
t (x, y)|2 dy < ∞ because gkt is continuous on the diagonal and smooth off it, with

decay for |x− y| large. Therefore, by Fubini’s theorem we have that

(λj + t)−k(f, φj) = (Gkt f, φj) =

∫ [∫
g

(k)
t (x, z)f(x) dx

]
φj(z) dz =

∫ [∫
g

(k)
t (x, z)φj(z) dz

]
f(x) dx

for any f ∈ C∞0 (S), so that ∫
g

(k)
t (x, z)φj(z) dz = (λj + t)−kφj(x)

Since {φj} is a complete orthonormal basis for L2, we can write

g
(k)
t (x, z) =

∑
n

cn(x)φj(z)

and the above relation implies that
cn(x) = (λj + t)−kφj(x)

and so g
(k)
t has the desired form

g
(k)
t (x, y) =

∑
(λj + t)−kφj(x)φj(y)

Plugging our previous estimates into (6) gives that

lim
t→∞

tk−ν
∑

(λj + t)−k = (2π)−n
∫

Ω

∫
Rn

(a0(x, ξ) + 1)−k dξ dx

which gives an asymptotic relation on the sum of the eigenvalues, namely that∑
(λj + t)−k ∼ H

tk−ν

where

H := (2π)−n
∫
S

∫
Rn

(a0(x, ξ) + 1)−k dξ dx

Then, using Theorem 3.3 from earlier, we get that

N(x) ∼ H Γ(k)

Γ(k − ν)Γ(ν + 1)
xν = H ′xn/2m

12
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which is the exact order we expect to see. Now, we need to calculate this H and H ′.
If we define

w(k)
a (x) = (2π)−n

∫
Rn

(a0(x, ξ) + 1)−k dξ

then if ρ, ω are polar coordinates on Rn with ρ2m = a0(x, ξ), then

w(k)
a (x) = (2π)−n

∫∫
Rn

(ρ2m + 1)−k dρn dω = (2π)−n
∫
dω

∫ ∞
0

(ρ2m + 1)−k dρn

and we can compute the surface integral as∫
dω =

∫ ∫ 1

0

dρndω =

∫
a0(x,ξ)<1

dξ

For the radial direction, we see that∫ ∞
0

(ρ2m + 1)−k dρn = n

∫ ∞
0

ρn−1(ρ2m + 1)−k dρ

Now, we make the change of variables t = (ρ2m + 1)−1, noting that

ρ =

(
1− t
t

)1/2m

dt = −2m(ρ2m + 1)−2ρ2m−1 dρ = −2mt2
(

1− t
t

) 2m−1
2m

dρ

to get ∫ ∞
0

(ρ2m + 1)−k dρn =
n

2m

∫ 1

0

(
1− t
t

)n−1
2m

tk
1

t2

(
1− t
t

) 1−2m
2m

dt

= ν

∫ 1

0

(1− t)ν−1tk−ν−1 dt

= νB(ν, k − ν) = ν
Γ(ν)Γ(k − ν)

Γ(k)
=

Γ(ν + 1)Γ(k − ν)

Γ(k)

where B(a, b) is the Euler Beta function. Therefore, our constant H is

H := (2π)−n
∫
S

∫
Rn

(a0(x, ξ) + 1)−k dξ dx = (2π)−n
Γ(ν + 1)Γ(k − ν)

Γ(k)

∫∫
a0(x,ξ)<1

dξ dx

and so the coefficient H ′ on the asymptotics of the eigenvalues is just

H ′ := (2π)−n
∫∫

a0(x,ξ)<1

dξ dx

which gives us

N(λ) ∼ (2π)−nλn/2m
∫∫

a0(x,ξ)<1

dξ dx

as the final desired result from [2].

Remark. This result can also be written in the form

N(λ) ∼ (2π)−n
∫∫

a0(x,ξ)<λ

dξ dx

because we are in n dimensional space, and a0 is homogeneous in ξ of degree 2m.

13



REFERENCES REFERENCES

References

[1] Lawrence C. Evans. Partial Differential Equations. American Mathematical Society, 2010.

[2] Lars G̊arding. On the asymptotic distribution of the eigenvalues and eigenfunctions of elliptic differential
operators. Math. Scand. 1, 1953.

[3] G. H. Hardy and J. E. Littlewood. Notes on the theory of series (xi): On tauberian theorems. Proc.
London Math. Soc., 2, 1930.
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