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Motivation

We want to be able to determine if
an inaccessible face of a material has
been corroded by applying heat and
taking temperature measurements on
an accesible face. Possible
applications include:

Detecting external hull
corrosion on a vessel from the
inside,

Finding possible corrosion in a
chemical pipe,

or

Testing ceramic materials for
imperfections.
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Motivation

Why Use Heat?

The flow of heat is well understood, from both a mathematical and
engineering perspective. Previous work has used electric fluxes to
find corrosion. [1].

However, heat has many advantages over electricity.

Completely non-contact method

Time dependence may be able to reveal more information
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Full Problem

Given:

A thermally conductive
object, with thermal
conductivity and
diffusivity.

A region of the object that
is corroded, with different
properties.

A heat flux g(x , y) applied
to the top surface.

Determine u(x , y , z , t), the
temperature in the block.
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The Heat Equation

Under some basic physics/engineering assumptions, we know that
the temperature u in the body must satisfy

∂u

∂t
− α∇2u = 0

where α = k
ρCp

is the thermal diffusivity of the material. Note: k is
thermal conductivity, ρ is density, and Cp is heat capacity per unit
mass.

This can be derived from the conservation of energy and describes
how heat travels through a medium.
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Simplified Problem

Given the unit square with:

Two regions, Ω1 and Ω2,
separated by a curve C (x).

The thermal properties of
both Ω1 and Ω2.

A heat flux g(x) applied
to the top surface (y = 1).

Determine the temperature in
the block u(x , y , t) at all times.
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Formal Problem Statement

After rescaling the problem to the unit

square, we know that u1 satisfies:

∂u1

∂t
− α1∇2u1 = 0 on Ω1

∂u1

∂x
= 0 on B2, B4

∂u1

∂y
= g(x) on B1

u1(x , y , 0) = 0 on Ω1
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Formal Problem Statement

Similarly, u2 satisfies:

∂u2

∂t
− α2∇2u2 = 0 on Ω2

∂u2

∂x
= 0 on B2, B4

∂u2

∂y
= 0 on B3

u2(x , y , 0) = 0 on Ω2
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Formal Problem Statement

The two solutions together also satisfy
continuity conditions on C (x):

u1 = u2 on C (x)

k1
∂u1

∂~n
= k2

∂u2

∂~n
on C (x)

Given these equations, the flux g(x), and
curve C (x) that bounds the corroded region
Ω2, can we find the functions u1(x , y , t)
and u2(x , y , t) satisfying all of them?
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Solutions to the Heat Equation

The Heat Equation can be solved analytically by many methods,
including Fourier series and Green’s functions

In cases where analytical methods fail, numerical solutions are
avaiable.

Ex: Spread of a point heat impulse.
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Inverse Problems

What we just saw was the “Forward Problem”; given a governing
equation, initial and boundary conditions, find a function that
satisfies all of these for our solution.

However, in the real world, we often know something about the
solution, and want to use this to determine information about our
boundary or initial conditions, or possibly some part of our
governing equation.

This leads to a mathematical Inverse Problem.
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Inverse Problem Statement

Assume we have the same problem setup as
before, but now C (x) is unknown.

We are given u1(x , 1, t) for all x , t
corresponding to the value of the solution
on the top surface.

Given this portion of the solution, and the
other constraints on the problem, can we
now determine C (x)?
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Corrosion Example

Let’s take a look at the value of the solution on the top boundary in the
corroded vs. uncorroded case. Below is an example of a small

corrosion profile.
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Corrosion Example

Comparing our solutions:

Surface temperatures for corroded versus uncorroded plates

Difference between corroded and uncorroded.
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Uniqueness

We have proved that a boundary temperature corresponds to a
unique corrosion profile.

We add the assumption that C (x) is supported away from the
sides of Ω on B3, and C (0) = C (l) = 0
The basic outline of the proof is:

Use unique continuation theorem to get a solution u1 for any
uncorroded material present.

Develop equivalence classes of possible solutions.

“Trim” the domain Ω to make it C 2.

Use a Uniqueness theorem by O. Poisson [3].

While we have a uniqueness result, we haven’t yet defined a
method to extract our curve C (x) from the partial solution data.
We move to this next.
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Mathematical Approach

The mathematical approach to this inverse problem involves three
steps:

Linearization

Integration with Green’s Identity

Regularization
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Linearization: Single Variable

Let z = f (y) be a continuous
and differentiable function on
some open interval.

Then, starting at some point
y0, we can approximate the
value of z = f (y) by

z ≈ z0 + f ′(y0)(y − y0)

for y sufficiently close to y0.
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Linearization: Multiple Variables

Assume that u1, u2, and C (x) are small perturbations of the
uncorroded situation:

u1 = u0 + ũ1 = u0 + εū1

u2 = u0 + ũ2 = u0 + εū2

C (x) = 0 + εC0(x)

We now look at the perturbation in region 1, ũ1.
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Linearization: Multiple Variables

We know ũ1 satisfies

∂ũ1

∂t
− α1∇2ũ1 = 0 on Ω

∂ũ1

∂~n
= 0 on sides and top

ũ1(x , y , 0) = 0

as well as the flux continuity condition on C (x)

k1
∂ũ1

∂~n
= (k2 − k1)

∂u0

∂~n
+ k2

∂ũ2

∂~n
(1)
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Linearization: Multiple Variables

Performing a linearization procedure on all three terms in
Equation 1 gives the following expression for the normal derivative
of ũ1:

∂ũ1

∂~y
|y=0 =

k1 − k2

k1

(
C (x)

∂2u0

∂y2
|y=0 − C ′(x)

∂u0

∂x
|y=0

)
or

∂ũ1

∂~y
|y=0 =

k1 − k2

k1

(
C (x)

α1

∂u0

∂t
|y=0 −

∂

∂x

(
C (x)

∂u0

∂x
|y=0

))
(2)
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Green’s Second Identity

Now that we have a linearized problem, Green’s Second Identity,
which follows from the Divergence Theorem, will allow us to use
what we know, the temperature on the top surface, to approximate
the curve C (x).

Theorem (Green’s Second Identity)

Let D ⊂ R2 be a simply connected region in the plane, and let ∂D
be the boundary of D. Then, for any u, v ∈ C 2(R2),∫

D
u∇2v − v∇2u dA =

∫
∂D

u
∂v

∂~n
− v

∂u

∂~n
ds

Matt Charnley and Andrew Rzeznik Thermal Detection of Inaccessible Plate Corrosion 19
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Test Functions

We define a test function φ such that:

∂φ

∂t
+ α1∇2φ = 0 on Ω

∂φ

∂x
= 0 on sides

∂φ

∂y
= 0 on bottom

φ(x , y ,T ) = 0 on Ω

These test functions are generated numerically using the Green’s
Function for heat and the method of images to give the desired
zero Neumann data conditions.
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Green’s Identity Integration

∫ T

0

∫
Ω
φ

(
∂ũ1

∂t
− α∇2ũ1

)
dA dt = 0

Using Green’s Identity, integration by parts, and Equation 2 gives:

RG(φk) :=

∫ T

0

∫
top

ũ1
∂φk

∂~n
ds dt =

∫ l

0

C(x)

∫ T

0

∂φk

∂x

∂u0

∂x
− u0

α1

∂φk

∂t
dt︸ ︷︷ ︸

wk (x)

dx (3)

where RG (φk) is known completely from the collected data and
choice of φk .
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Problem Solution

RG (φk) =

∫ l

0
C (x)wk(x) dx

There are many functions C (x) that will solve this problem.

Assume:
∫ 1

0 C (x) dx = 5
6 and

∫ 1
0 xC (x) dx = 7

12

There are infinitely many functions that satisfy these constraints:

f (x) = x2 + x

g(x) = 2x2 + 1
6

h(x) = 5x3 − 5
12

j(x) = 5x4 − x + 1
3
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Problem Solution

RG (φk) =

∫ l

0
C (x)wk(x) dx

There are many functions C (x) that will solve this problem.

In order to specify a single function, we look for one with the
smallest L2 norm. It can be shown that such a function is of the
form

C (x) =
N∑
i=1

λiwi (x)

Matt Charnley and Andrew Rzeznik Thermal Detection of Inaccessible Plate Corrosion 22
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Problem Solution

RG (φk) =

∫ l

0

N∑
i=1

λiwi (x)wk(x) dx

which can be rewritten as:

RG (φk) =
N∑
i=1

λi

∫ l

0
wi (x)wk(x) dx

Defining B such that

Bij =

∫ l

0
wi (x)wj(x) dx

gives
~RG = B~λ ⇒ ~λ = B−1 ~RG
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Problem Solution

This is obviously a problem.
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Regularization: Ill-posedness

This inverse problem is very ill-posed/ill-conditioned. The matrix B
has singular values very close to zero, so B−1 has very large values.
This results in large λi values, causing the approximation of C (x)
to be well beyond physical constraints.

In order to produce a feasible solution, we need to regularize the
problem.
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Regularization Methods

Our regularization method involves the Singular Value
Decomposition of the matrix B.

We want to eliminate the extremely large values in B−1. To do
this, we look at the singular values of B. If the value is under a
certain threshold, the corresponding value in B−1 is set to zero,
removing the high amplitude values from ~λ.
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Method of Computing Results

Three separate trials to avoid errors near the laser source.
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Results: Single Corrosion Profile

Note: In all of the following reconstructions, we used

wk(x) =

∫ T

0

k2 − k1

k1

∂u0

∂x

∂φk
∂x

dt

instead of Equation 3 because this gave significantly improved
results.
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Results: Single Corrosion Profile
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Results: Large Corrosion Profile
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Results: Multiple Corrosion Profiles
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Results: Discussion

We can find corrosion!!

We can definitely see where it is, and can estimate the area of
the corrosion within an acceptable error.

Even for large corrosion, which is well outside the range of
linearization, we can see where the majority of the corrosion is.

Reconstruction only takes about a minute after the test
functions have been computed.
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Future Work

1 Look into why removing the time derivative term produces
significantly better results.

2 Use parameters from actual metals and equipment.

3 Other ways of utilizing the time dependence of the heat
equation.

4 Time-Dependent Fluxes

5 Full 3-Dimensional problem
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Questions?
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Linearization

Consider:
M : C (x)→ D

the map from corrosion profiles C (x) to the temperature data D
on the top surface.

This map is very non-linear and can be computed via a forward
problem/heat equation solver. Linearizing the problem will allow
for an inverse map to be approximated.
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Linearization: Multiple Variables

In our case, we have a function of multiple variables, but for each
(x , t), we can consider u as only a function of y , and linearize it
with respect to that variable.
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Linearization: Multiple Variables

Since

~n =
< −C ′(x), 1 >√

C ′(x)2 + 1

We can write

k1
∂ũ1

∂~n
|C(x) = k1

(
∂ũ1

∂y
|C(x) − C ′(x)

∂ũ1

∂x
|C(x)

)
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Linearization: Multiple Variables

Since

~n =
< −C ′(x), 1 >√

C ′(x)2 + 1

We can write

k1
∂ũ1

∂~n
|C(x) = k1

(
∂ũ1

∂y
|C(x) − C ′(x)

∂ũ1

∂x
|C(x)

)

And, doing a linearization about 0 as discussed before, we get

k1
∂ũ1

∂~n
|C(x) = k1

(
∂ũ1

∂y
|y=0 + C(x)

∂2ũ1

∂y 2
|y=0 − C ′(x)

∂ũ1

∂x
|y=0 − C(x)C ′(x)

∂2ũ1

∂x∂y
|y=0

)
ignoring terms of higher orders.
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Linearization: Multiple Variables

Similarly, for the other two terms:

(k2 − k1)
∂u0

∂~n
= (k2 − k1)

(
∂u0

∂y
− C ′(x)

∂u0

∂x

)
= (k2 − k1)

(
∂u0

∂y
|y=0 + C(x)

∂2u0

∂y 2
|y=0 − C ′(x)

∂u0

∂x
|y=0 − C(x)C ′(x)

∂2u0

∂x∂y
|y=0

)
k2
∂ũ2

∂~n
= k2

(
∂ũ2

∂y
− C ′(x)

∂ũ2

∂x

)
= k2

(
∂ũ2

∂y
|y=0 + C(x)

∂2ũ2

∂y 2
|y=0 − C ′(x)

∂ũ2

∂x
|y=0 − C(x)C ′(x)

∂2ũ2

∂x∂y
|y=0

)
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Linearization: Multiple Variables

Substituting in, assuming that all of the perturbations are of order
ε, gives

k1
∂ũ1

∂~n
= (k2 − k1)

∂u0

∂~n
+ k2

∂ũ2

∂~n

k1
∂ũ1

∂y
|y=0 = (k2 − k1)

(
∂u0

∂y
+ C(x)

∂2u0

∂y 2
− C ′(x)

∂u0

∂x

)
+ k2

∂ũ2

∂y
+ O(ε2)

with everything evaluated at y = 0. However, since

∂u0

∂y
|y=0 =

∂ũ2

∂y
|y=0 = 0

we are left with

k1
∂ũ1

∂y
|y=0 = (k2 − k1)

(
C(x)

∂2u0

∂y 2
|y=0 − C ′(x)

∂u0

∂x
|y=0

)
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Green’s Integration

∫ T

0

∫
Ω
φ

(
∂ũ1

∂t
− α∇2ũ1

)
dA dt = 0

Integrating by parts and using Green’s Identity gives∫ T

0

∫
top

ũ1
∂φ

∂~n
ds dt =

∫ T

0

∫
bottom

φ
∂ũ1

∂~n
ds dt

since these functions are zero elsewhere on the boundary.
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Green’s Integration

∫ T

0

∫
top

ũ1
∂φ

∂~n
ds dt =

∫ T

0

∫
bottom

φ
∂ũ1

∂~n
ds dt

Since we collect data for ũ1 on the top and know φ explicitly, the
entire left side of this equation is known. This is defined as the
Reciprocity Gap integral, or RG (φ).

Using Equation 2 and integrating by parts, this equation can be
simplified to

RG (φk) =

∫ l

0
C (x)

∫ T

0

∂φk
∂x

∂u0

∂x
− u0

α1

∂φk
∂t

dt︸ ︷︷ ︸
wk (x)

dx
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∂ũ1

∂~n
ds dt
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Regularization Methods

One possible method of regularization is the Tikhonov
Regularization, which for this problem would involve minimizing

Q̃ =
N∑

k=1

∣∣∣∣RGk −
∫ l

0
C (x)wk(x) dx

∣∣∣∣+ β ‖C (x)‖2

where β is an adjustable regularization parameter.
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Test Function Generation

We want to construct a set of test functions φ such that

∂φ

∂t
+ α1∇2φ = 0 on Ω

∂φ

∂x
= 0 on sides

∂φ

∂y
= 0 on bottom

φ(x , y ,T ) = 0 on Ω

We use the Green’s Function for heat and the method of images.
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Green’s Function for Heat

The Green’s Function for heat, or the heat kernel, in 2 Dimensions
is:

K(x0,y0)(x , y , t) =
1

4παt
e−

(x−x0)2+(y−y0)2

4αt

It can be shown that this function solves:

∂K(x0,y0)

∂t
− α∇2K(x0,y0) = 0

K(x0,y0)(x , y , 0) = δ(x − x0, y − y0)

where

δ(a, b) =

{
1 a = b = 0
0 otherwise
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Test Functions

By carrying out the computations, it can be shown that∫ t

0
K(x0,y0)(x , y , τ) dτ

also solves the heat equation, and has zero initial condition.

Therefore any sum of these integrals will also solve the heat
equation with zero initial condition.
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Method of Images

We need to create a function φ with zero Neumann Data at x = 0, x = l , and
y = 0. To do this, we apply the method of images, making the function
(nearly) symmetric about these lines in order to guarantee zero normal
derivative there. We choose any point (x0, y0) that is off of the top edge of the
plate, and use that for our source point.
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Method of Images

To guarantee zero flux at x = 0 we take the point, reflect it over x = 0 and
then symmetrically reflect it over the lines x = jl for j ∈ {−N, ...,N} for some
N. Note that this set of data is almost symmetric around x = l , and the only
difference is a set of two points more than Nl units away, so the flux at x = l is
nearly zero. The equation describing the temperature for this situation is:

N∑
j=−N

∫ t

0

K(2jl+x0,y0)(x , y , τ) + K(2kl−x0,y0)(x , y , τ) dτ
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Method of Images

Finally, to get the solution with zero Neumann Data at y = 0, we reflect all of
the points over the line y = 0.

Which gives a final equation of

Ψ(x , y , t) =
N∑

j=−N

∫ t

0

K(2jl+x0,y0)(x , y , τ) + K(2kl−x0,y0)(x , y , τ)

+K(2jl+x0,−y0)(x , y , τ) + K(2kl−x0,−y0)(x , y , τ) dτ

Matt Charnley and Andrew Rzeznik Thermal Detection of Inaccessible Plate Corrosion 51



Introduction
Forward Problem
Inverse Problem

Mathematical Approach
Results

Future Work

Linearization
Green’s Integration
Regularization
Test Functions

Test Functions

However, this is not exactly the function we want. We need something that
solves

∂φ

∂t
+ α∇2φ = 0 with φ(x , y ,T ) = 0

Since Ψ solves the forward heat equation with zero initial condition, defining

φ(x , y , t) = Ψ(x , y ,T − t)

gives a function with all the desired properties.

Choosing a set of points (x0, y0)k gives the set of functions φk used in the
calculations.
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