MATH 252 - Readiness Assessment 4
 June 15, 2018

Name:

1. Let $x(t)$ and $y(t)$ be two functions defined as the solution to a two-component autonomous system

$$
\frac{d x}{d t}=f(x, y) \quad \frac{d y}{d t}=g(x, y)
$$

What does this system look like if it is linear with constant coefficients?
2. What is/are the equilibrium solutions of these systems? There are two different options here, depending on some condition on the coefficient matrix A.
3. Are the vectors $\binom{1}{2}$ and $\binom{2}{-1}$ linearly independent?
4. Are the solutions $\binom{2 e^{t}-e^{-2 t}}{e^{t}+e^{-2 t}}$ and $\binom{e^{t}+e^{-2 t}}{-e^{-2 t}}$ linearly independent?
5. Which of the following solutions for $x(t), y(t)$ travel on a straight line through the origin?

$$
\begin{aligned}
& \binom{1}{3} e^{2 t} \quad\binom{1}{2} e^{t}+\binom{2}{3} e^{-4 t} \quad\binom{1}{2} e^{3 t}+\binom{2}{4} e^{-t} \\
& \binom{-1 \cos (t)}{2 \cos (t)+\sin (t)}+\binom{2 \sin (t)}{4 \cos (t)-3 \sin (t)} \quad\binom{1}{-1} e^{-t}
\end{aligned}
$$

6. If $e^{\lambda t} \vec{v}$ is a straight line solution to $\frac{d \vec{x}}{d t}=A \vec{x}$, what must λ and \vec{v} satisfy? What are λ and \vec{v} ?
