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Abstract

The Navier-Stokes equations are some of the most studied partial differential equations
because they are important to both theoretical and applied mathematics. Theoretical mathe-
maticians are attempting to prove that these equations admit a unique solution for given sets
of initial data, and applied mathematicians use them to model the flow of an incompressible
fluid in a variety of situations. But where do these equations come from? In this talk, some
of the history of the Navier-Stokes equations and a derivation of them from physical principles
will be presented. Then, a few simple problems will be discussed to show how by making some
assumptions (which may or may not be accurate), explicit solutions of these equations can be
obtained. Finally, modern results will be shown to explain what mathematicians have so far in
terms of proving the desired existence and uniqueness results.

1 Introduction

In mathematical contexts, the Navier-Stokes equations are written in the form

∂ui
∂t

+
n∑
j=1

uj
∂ui
∂xj

= ν∆ui −
∂P

∂xi
+ fi(x, t) (1)

div u = 0

where the fi are components of an externally applied force, ui is the velocity, P is the pressure,
and ν is a positive constant dependent on the fluid. The Millennium Problem asks for a proof of
existence and uniqueness of solutions in R3 to these (vectorial) equations that are either smooth
and periodic, or smooth with bounded energy. This problem is still unsolved, so we do not know if
solutions actually exist or are unique in arbitrary domains/all of Euclidean space.

However, engineers (specifically chemical) have classes devoted to the use of the Navier-Stokes
equations to analyze flows through different geometries and under different circumstances. How
is this possible? The main thing that allows this is that most engineering problems can be de-
signed/assumed to fit more strict conditions, which then allow terms to be removed from the
equation, granting explicit solutions.

The main goal of this talk is to give an introduction to these equations and where they come
from. I’ll start by introducing the equations and the people that contributed to their development. I
will then go into a derivation of the equations and show how they are derived from the conservation
of momentum. Next, I’ll talk about some of the assumptions that engineers make when using these
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equations to solve problems. Finally, I’ll move back to the mathematics side, where I will discuss
some of the more recent results towards this Millennium Problem of proving the existence and
uniqueness of solutions.

2 History

Many famous names, and some of our favorite people, were involved in the development of the
Navier-Stokes equations. First of all is Newton. Newton’s second law, F = ma is a statement of
conservation of momentum, which is exactly what gives rise to the Navier-Stokes equations. Euler
also got involved by writing down some equations for fluid flow, most of which will be derived from
first principles. His equations, however, ignored the viscosity (ν) and external force terms. Cauchy
developed the idea of the stress tensor that bears his name.

The Cauchy Stress tensor σ is a 3× 3 matrix defined as follows

σij = Force of fluid of greater i on lesser i in j direction

As an example, take this cubic piece of fluid. σxx in this case represents the force... This value
is negative in compression. The other values are defined the same way σxy etc. Now, if we take
the average compression force over this piece of fluid, we get... the pressure. So, if we define the
pressure P as

P = −1

3
trace(σ),

we can decompose σ into

σ = −PI + τ (2)

where τ is a anisotropic, symmetric, traceless matrix called the deviatoric stress. Cauchy’s main
work shows that σ, and hence τ are symmetric matrices. His other contribution was to note that
the external force exerted on a point of fluid can be represented by

~f = σ · ~n

where ~n is an outward normal to the surface. Newton had already been thinking about these
two matrices, but the description of τ was finally flushed out by Stokes to give Newton’s Law of
Viscosity, which says that, for a Newtonian, incompressible fluid,

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
. (3)

where µ is the viscosity of the fluid.

So, what do these two assumptions mean? The fact that the fluid is Newtonian and incom-
pressible is what is assumed in the statement of the Navier-Stokes Equations. The first one,
incompressibility, basically means that the density of the fluid is a constant. Even if there is more
pressure on one area of the fluid, it does not ‘compress’ and the density does not increase. This
is a very reasonable assumption for liquids. Assuming that the fluid is Newtonian is a little more
complicated. Basically, it means that there is a linear relationship between the rate of strain and
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stress applied to the system. Think of a rubber band. If you pull on it a little, it stretches a little.
If you pull about twice as hard, it will stretch twice as far. That’s the idea here. For a fluid, it’s
the rate of deformation that matters as opposed to the amount, but it works the same. The force τ
is proportional to the rate of change of velocity, and the constant of proportionality is µ, the fluid
viscosity.

With all of this, we can finally introduce the people with their names on these equations. Claude
Louis Marie Henri Navier (1785-1836) was a French engineer and physicist. He spent most of his
time working at the Corps of Bridges and Roads, and designed several bridges for the Department of
the Seine. He also had Fourier as his doctoral advisor and took over for Cauchy as a professor at the
Ecole Polytechnique. His main works involved putting the theory of elasticity into a mathematically
usable form (1821) and modeling the modulus of elasticity of materials (1826). His work on the
equations of Fluid Flow came out in 1822.

Sir George Gabriel Stokes, 1st Baronet (1819-1903) was born in Ireland and spent most of his
time working as a professor at Cambridge. Outside of his Fluid Dynamics work, he represented
Cambridge in Parliament, was a member of the Royal Society, and helped to bring fame to the
mathematical physics department at Cambridge, along with Maxwell and Kelvin. He published
work on the polarization of light, rainbows, flourescence, and has the Stokes’ theorem from differ-
ential geometry, as well as a ton of other things. The unit for kinematic viscosity is called a stoke
in his honor. His work on Fluid Dynamics and these equations came out in 1845.

3 Derivation

So, now we’re going to see how, using these various developments, we can derive the Navier-Stokes
equations from basic principles. This is probably not the way that it was originally derived, but
this way is (most likely) easier and, to me at least, makes sense. Let D be an arbitrary domain in
R3. We’re going to use vectorial equations on D to derive the Navier-Stokes Equations. We will
do this by the use of conserved quantities.

3.1 Mass Balance

Firstly, we know that mass is conserved within our domain. The general formula for a balance is

acc = in− out+ gen− cons

• Mass can not be created or destroyed, so those two terms are zero.

• The accumulation of mass in our domain is given by the expression

acc =
∂

∂t

∫
D
ρ dV =

∫
D

∂ρ

∂t
dV. (4)

• The amount of mass coming in to our out of the domain is determined by the flux over the
surface:

in− out = −
∫
∂D

ρ(~u · ~n) dA. (5)
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However, applying the divergence theorem to (5) gives

in− out = −
∫
D
∇ · (ρ~u) dV (6)

Combining (4) and (6) gives us an equation for the mass balance, which holds over EVERY
domain D ∫

D

[
∂ρ

∂t
+∇ · (ρ~u)

]
dV = 0 (7)

Now, since this holds over every domain D, it also holds over all subsets of D. Since this integral
is always zero, it implies that the function itself is zero. Therefore, differentiating the gradient, we
get

∂ρ

∂t
+ ~u · ∇(ρ) + ρ∇ · ~u = 0 (8)

And now, we make our first assumption about the fluid. By assuming the fluid is incompressible
(which is true for most liquids) the density becomes a constant independent of position, velocity,
and time. Therefore, all of the derivatives of density are zero, and we are left with

∇ · ~u = 0 (9)

which is equivalent to a mass balance in an incompressible fluid.

3.2 Momentum Balance

Now, we need to balance the momentum coming in and out of the domain. In addition to the flow
terms, we also have a ‘generation’ term that comes from any outside forces acting on the body,
since

F = ma = ∆p.

Note that we will be using momentum per unit volume, integrated over the volume of the domain,
which is ρ~u. We are filling in the terms of the equation

acc = in− out+ gen− cons

and we’ll start by analyzing the momentum in each direction individually.

• The accumulation term is

acc =
∂

∂t

∫
D
ρux dV =

∫
D

∂ρux
∂t

dV (10)

• The convection term is

in− out = −
∫
∂D

(ρux)(~u · ~n) dA (11)

Applying the Divergence Theorem to this gives

in− out = −
∫
D
∇ · (ρux~u) dV (12)
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• Finally, we have to deal with the external forces. These consist of two parts, body forces
(gravity) and external forces.

gen(grav) =

∫
D
ρgx dV (13)

gen(surf) =

∫
∂D

σ · ~n · êx dA =

∫
D
∇ · σ · êx dV (14)

By applying the Cauchy Stress Equation, we can simplify this last equation to

gen(surf) =

∫
D
∇ · (PI + τ) · êx dV =

∫
D
∇ ·

P0
0

+

τxxτyx
τzx

 dV (15)

Evaluating the derivatives gives

gen(surf) =

∫
D

∂P

∂x
+
∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

dV (16)

However, using (3) for the definition of τ , this reduces to

gen(surf) =

∫
D

∂P

∂x
+ µ

[
∂2ux
∂x2

+
∂

∂x

∂ux
∂x

+
∂2ux
∂y2

+
∂2uy
∂x∂y

+
∂2ux
∂z2

+
∂2uz
∂x∂z

]
dV (17)

=

∫
D

∂P

∂x
+ µ

[
∂2ux
∂x2

+
∂2ux
∂y2

+
∂2ux
∂z2

]
+ µ

∂

∂x

[
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

]
dV (18)

=

∫
D

∂P

∂x
+ µ∆ux + µ

∂

∂x
∇ · ~u dV (19)

and the last term in this expression is zero by the mass balance for an incompressible fluid.

Therefore, putting all of these terms together, we have∫
D

∂ρux
∂t

dV = −
∫
D
∇ · (ρux~u) dV +

∫
D

∂P

∂x
+ µ∆ux dV +

∫
D
ρgx dV (20)

Again, since this holds for any domain D, we can drop the integrals to get the microscopic
equation

∂ρux
∂t

+∇ · (ρux~u) =
∂P

∂x
+ µ∆ux + ρgx (21)

If we again invoke the fact that the fluid is incompressible, then ρ is a constant, which can
be removed from all derivatives, and we can simplify

∇ · (ux~u) = ux(∇ · ~u) + ~u · (∇ux) = ~u · (∇ux)

to give the final equation

ρ

[
∂ux
∂t

+ ~u · (∇ux)

]
=
∂P

∂x
+ µ∆ux + ρgx (22)

and the same equation holds if you replace x by either y or z. Comparing this to (1) yields
that the forces fi are replaced by gravity, and up to moving ρ to the other side of the
equation ν = µ/ρ. Many different types of forces are possible based on the particular fluid
and situation, but just having gravitational force is the most basic type.
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4 Problems

So we have these differential equations, and we don’t know whether or not they have a unique
solution. What can we do with them? Well, the engineers have an answer, and that is to make
simplifying assumptions.

• Steady State Flow

• Unidirectional or 2D flow

• Inviscid

The steady state assumption is that the fluid has reached an equilibrium with the applied
forces and boundary conditions. It, in general, is not a bad assumption to make for solving for
the equilibrium point, but might not actually describe how the fluid is behaving. Some of these
assumptions are ok, and others are completely wrong, which we will see as we go along. But, using
these assumptions, we can actually solve some problems.

• Plane Couette Flow (p.116 of DTL)
Assume we have a stationary plate, a bunch of incompressible Newtonian fluid, and a movable
plate on top of it that we pull at a velocity V . We will assume that the flow is unidirectional
in the x direction (probably ok) and that the system is infinite in the z direction, so all z
derivatives are zero. Finally, we assume that it is a steady flow, so all time derivatives are
zero. Then, since uy and uz are zero, the mass balance equation tells us that

∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

=
∂ux
∂x

= 0 (23)

Now, we can us the three Navier-Stokes equations to actually solve for the velocity profile.

ρ

[
∂uy
∂t

+ ux
∂uy
∂x

+ uy
∂uy
∂y

+ uz
∂uy
∂z

]
=

∂P

∂y
+ µ∆uy + ρgy (24)

0 + 0 + 0 + 0 =
∂P

∂y
+ 0 + ρg (25)

ρ

[
∂uz
∂t

+ ux
∂uz
∂x

+ uy
∂uz
∂y

+ uz
∂uz
∂z

]
=

∂P

∂z
+ µ∆uz + ρgz (26)

0 + 0 + 0 + 0 =
∂P

∂z
+ 0 + 0 (27)

ρ

[
∂ux
∂t

+ ux
∂ux
∂x

+ uy
∂ux
∂y

+ uz
∂ux
∂z

]
=

∂P

∂x
+ µ∆ux + ρgx (28)

0 + 0 + 0 + 0 =
∂P

∂x
+ µ

∂2ux
∂y2

+ 0 (29)

∂2ux
∂y2

= 0 (30)
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where we have assumed that there is no applied pressure gradient in the x direction. We can
then integrate this last equation twice with the boundary conditions

ux |y=0= 0 ux |y=h= V (31)

to see that

ux = Ay +B =
V

h
y (32)

so the profile is linear, as expected. These boundary conditions come from the continuum
approximation and the “no-slip” condition: The fluid on the boundary of a system has to be
moving at the same velocity as the boundary.

• Flow Down an inclined plane
Assume we have an inclined plane of angle θ, and our fluid is flowing down the plane under
the force of gravity. If it is a viscous fluid, it will quickly reach a steady profile of thickness δ
(this might be a decent assumption). To start to analyze this problem, we pick a coordinate
system that aligns with the slope of the ramp. Again, assuming unidirectional steady flow,
with no changes in the z-direction, we have

ρ

[
∂uy
∂t

+ ux
∂uy
∂x

+ uy
∂uy
∂y

+ uz
∂uy
∂z

]
=

∂P

∂y
+ µ∆uy + ρgy (33)

0 + 0 + 0 + 0 =
∂P

∂y
+ 0− ρg sin(θ) (34)

ρ

[
∂uz
∂t

+ ux
∂uz
∂x

+ uy
∂uz
∂y

+ uz
∂uz
∂z

]
=

∂P

∂z
+ µ∆uz + ρgz (35)

0 + 0 + 0 + 0 =
∂P

∂z
+ 0 + 0 (36)

ρ

[
∂ux
∂t

+ ux
∂ux
∂x

+ uy
∂ux
∂y

+ uz
∂ux
∂z

]
=

∂P

∂x
+ µ∆ux + ρgx (37)

0 + 0 + 0 + 0 = 0 + µ
∂2ux
∂y2

− ρg cos(θ) (38)

∂2ux
∂y2

= ρg cos(θ) (39)

The boundary conditions on that last equation come from the geometry of the situation

ux|y=0 = 0 τxy|y=δ = µ
∂ux
∂y
|y=δ = 0 (40)
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• Flow in a pipe. In this case, we have flow through a pipe, where the flow is driven by a
pressure gradient in the axial direction. We will use cylindrical coordinates to describe the
system. Assuming unidirectional flow again (which is not very good in this case), we can look
at the uz equation.

∇ · u = 0 ⇒ ∂uz
∂z

= 0 (41)

ρ

[
∂uz
∂t

+ ur
∂uz
∂r

+
uθ
r

∂uz
∂θ

+ uz
∂uz
∂z

]
=

∂P

∂z
+ µ∆uz + ρgz (42)

0 + 0 + 0 + 0 =
∂P

∂z
+ µ∆uz + 0 (43)

If we assume that ∂P
∂z = −∆P

L (good assumption), we can expand the Laplacian

∆uz =
1

r

∂

∂r

(
r
∂uz
∂r

)
+

1

r2

∂2uz
∂θ2

+
∂2uz
∂z2

=
1

r

∂

∂r

(
r
∂uz
∂r

)
(44)

So we are left to solve
1

r

∂

∂r

(
r
∂uz
∂r

)
=

∆P

µL
(45)

with boundary conditions
uz|r=R = 0 uz|r=0 <∞ (46)

where the last condition arises because there is a logarithmic term in the solution.

5 Mathematical Results

There are several different ways that people have approached trying to prove the existence an
uniqueness of solutions to the Navier-Stokes Equations. Most of the information presented here
comes from the work by Caffarelli, Kohn, and Nirenberg.

A general method in trying to solve this for an arbitrary PDE is to prove the existence of weak
solutions, and then show that they satisfy some sort of regularity. The first result, an old result
from Leray and Hopf, shows that weak solutions to this boundary/initial value problem do exist.
However, the main issue with these solutions is the regularity, we still do not know if the velocity
u can develop singularities over time, even if the initial and boundary conditions are C∞.

Another issue with the problem uniqueness. We can try to find solutions in spaces where we
know the solution will be unique however, although these solutions exist with some basic assump-
tions on u0, they are only valid for a short time interval. These solutions blow up in finite time, so
they do not provide a method to study the problem for all time. Therefore, we are forced to look
at weak solutions, or solutions that do not satisfy the PDE in the classical sense.

We now want to find a way to analyze “how bad” the solution is, and where things go wrong.
To do this, we define a singular point if the function u(x, t) is not in L∞

loc in any neighborhood of
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(x, t). Wherever u is essentially bounded, we say that (x, t) is a regular point. The main results
by both Scheffer and Caffarelli, Kohn, and Nirenberg involve the “size” of the set of singular points.
In order to do this, we need a couple of definitions.

Definition 5.1. The Hausdorff k-measure of a set X is defined as

Hk(X) = lim
δ→0
Hkδ (X)

where we define

Hkδ (X) = inf

{ ∞∑
i=1

rki | X ⊆ ∪∞i=1Ci, ri = diam(Ci) < δ

}
.

Note: The Hausdorff Dimension of a set is the unique real number k so that 0 < Hk(S) < ∞.
We also define parabolic cylinders that will be used in defining a new measure on sets.

Qr(x, t) = {(y, τ) | |y − x| < r, t− r2 < τ < t}

Definition 5.2. The Parabolic Hausdorff k-measure of a set X is defined analogously

Pk(X) = lim
δ→0
Pkδ (X)

where we define

Pkδ (X) = inf

{ ∞∑
i=1

rki | X ⊆ ∪∞i=1Qri , ri < δ

}
.

With this, we can state the major results that we have for the Navier Stokes Equations. The
first is due to Scheffer (1977)

Theorem 5.1. For f = 0, there exists a solution of the Navier-Stokes Equations such that the
singular set S satisfies:

(a) H5/3(S) <∞

(b) H1(S ∩ (Ω× t)) <∞ uniformly in t.

Caffarelli-Kohn-Nirenberg proved their own version of this theorem.

Theorem 5.2. For a suitable weak solution of the Navier-Stokes equation, the singular set S
satisfies P1(S) = 0.

In order to use this theorem, they also prove that under certain conditions on Ω, u0 and f , the
Navier-Stokes equations have a suitable solution.

Theorem 5.3. Assume that Ω = R3 or Ω is bounded with smooth boundary, and let D = Ω×(0, T ).
Suppose that for some q > 5

2 ,

f ∈ L2(D) ∩ Lqloc(D) ∇ · f = 0

and that
u0 ∈ L2(Ω) ∇ · u0 = 0 u0 · ν|∂Ω = 0.

If Ω is bounded, we also require that u0 ∈W 2/5
5/4 (Ω). Then the Navier-Stokes equations have a weak

solution on D whose singular set S satisfies P1(S) = 0.
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Theorem 5.4. Suppose that u0 ∈ L2(R3), ∇ · u0 = 0 and∫
R3

|u0|2|x| dx <∞

Then there exists a weak solution to the N-S equations for f = 0 that is regular within the region

{(x, t) | |x|2t > K1}

where K1 depends on the value of the integral and the 2−norm of u0.

And finally, we have a brand new ‘result’. Prof. Mukhtarbay Otelbayev, from Kazakhstan has
recently claimed to have solved the entire existence and uniqueness problem for the Navier-Stokes
equations. He approaches the periodic boundary version of the problem. The paper, however, is in
Russian, and until now, there has not been much of a response to it. Most of the math community
is waiting for the paper to be translated in order to fully analyze it.
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