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Abstract

Inverse problems is an area of partial differential equations that lends itself well to applied problems.
In general, these problems involve trying to reconstruct information about a system from a partial solution
to a PDE in the system. These types of solution methods could be useful in fields such as structural
analysis, where we would like to find information about the inside of a structure without taking it apart.
In this talk, I will discuss a specific inverse problem for the heat equation and show how we attempted to
solve this problem numerically. This was a joint work with Andrew Rzeznik (MIT) and Dr. Kurt Bryan
(Rose-Hulman Institute of Technology) during a Summer 2012 REU.

1 Introduction

Many engineering problems have their roots in a sort of inverse problems. For partial differential equations,
one generally knows all of the characteristics about a domain, and is trying to analyze how, for instance,
temperature in the domain changes over time. This has some use in engineering problems, in order to
determine what material to make a structure out of, but once the structure is in use, the inverse problem has
more significance. In this case, we can measure temperature on the surface, but may not know exactly what
the thermal properties look like on the inside. Therefore, we need to solve the inverse problem to understand
the situation.

In this talk, I will briefly describe what inverse problems are and the different issues that arise in trying
to solve them. I will then sketch and motivate the problem we were interested in solving and show the
computations that derive the desired relations. I will then discuss the ill-posedness of this problem and show
some of our results and conclusions. The work done on this project was a joint work with Andrew Rzeznik
(MIT) and Dr. Kurt Bryan (Rose-Hulman) at the Rose-Hulman REU in Summer 2012. It can also be
found in the paper ”Thermal Detection of Inaccessible Corrosion” in SIAM Undergraduate Research Online,
Volume 6.

2 Inverse Problems

In a sense, inverse problems are the opposite of normal problems that one would try to solve in PDE.
PDE problems involve generating a (potentially time-dependent) solution to a differential equation given the
system parameters. On the other hand, Inverse Problems want to take a (partial) solution and derive some
information about the system parameters from it. For example, one could try to determine the thermal
diffusivity of a body by applying a series of heat fluxes to it, given the shape of the body. In general, this
would seem to be a fairly simple problem; if there was an analytic solution or full numerical data, one could
just take derivatives and plug in for the constants that one is trying to solve for. In physical situations
however, the problems become more interesting, because one has a very limited amount of data to work
with, as you will see with this problem.

There are three main issues to consider with inverse problems: Existence, Uniqueness, and Well-posedness.
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3 SKETCH OF PROBLEM

(a) For the applied problems we are trying to solve, existence is usually trivial.

(b) Uniqueness is very important, but it has not been proven for the specific problem we were trying to
solve. For the problem that I will sketch out in a second, it seems like there should be some sort of
uniqueness, possibly given some constraints on the system.

(c) Well-posedness is the key issue for this problem. This is the fact that a small change in the input
data leads to a small change in the output. In general, one can try to prove that a given inverse
problem method is well-posed, but in our case, we can see numerically that our reconstructed method
is ill-posed. Therefore, we require a regularization method to correct this problem.

3 Sketch of Problem

For our particular problem, which deals with corrosion in a metal plate, we will assume that the metal plate
is a finite rectangle Ω of length L and height 1, as shown in Figure 1. The rectangle Ω is set in the Cartesian
plane R2 so that x = 0 marks the left side of the rectangle, x = L is the right edge, y = 0 denotes the bottom
of the sample and y = 1 indicates the top.

Figure 1: General setup for the problem

We also assume there are two regions, separated by the curve C(x), each having different thermal properties,
which include thermal conductivity (k) and thermal diffusivity (α). We will also assume that all external
boundaries except the boundary at y = 1 are perfectly insulated, so no heat can enter or escape, while some
defined heat flux g(x) is applied on the top boundary, y = 1. Temperature and heat flux are assumed to be
continuous over any interface, including the curve C(x). All of these conditions can be formally stated as
follows.

We assume that u1 satisfies

∂u1

∂t
− α1∇2u1 = 0 on Ω1

∂u1

∂x
= 0 on x = 0, x = L

∂u1

∂y
= g(x) on y = 1

u1(x, y, 0) = 0 on Ω1,
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4 COMPUTATION

while it is assumed that u2 satisfies

∂u2

∂t
− α2∇2u2 = 0 on Ω2

∂u2

∂x
= 0 on x = 0, x = L

∂u2

∂y
= 0 on y = 0

u2(x, y, 0) = 0 on Ω2,

and the continuity conditions on C(x) give us

u1 = u2 on C(x)

k1
∂u1

∂~n
= k2

∂u2

∂~n
on C(x).

The forward problem would be stated: Given the input flux g(x), the thermal properties of both materials,
and the curve C(x) dividing Ω1 and Ω2, find the temperature profiles u1 and u2 that satisfy these equations.
The inverse problem, on the other hand, assumes that we do not know the curve C(x), but we can measure
the temperature on the top surface u(x, 1, t). The idea of this problem is to use this temperature data on
the top surface to recover information about the curve C(x).

4 Computation

This will be done using Green’s identity and integrating u by parts against strategically chosen test functions.
We begin with

Theorem 4.1 (Green’s Second Identity). For any bounded region D ⊂ R2 with piecewise smooth boundary
∂D, and any two functions u, v ∈ C2(D̄), we have∫

D

(u∇2v − v∇2u) dA =

∫
∂D

(
u
∂v

∂~n
− v ∂u

∂~n

)
ds.

We want to use Green’s Identity with what we know about both the interior and the boundary of Ω to
generate an approximation for the function C(x). This analysis will also use a collection of ‘test functions’
φk, 1 ≤ k ≤M . Each test function φk will satisfy

∂φk
∂t

+ α1∇2φk = 0 on Ω,

∂φk
∂~n

= 0 on y = 0, x = 0, and x = L,

φk(x, y, T ) = 0 on Ω.

These functions are constructed via the Method of Images, which I will go into later if we have time. We
start with the equation ∫ T

0

∫
Ω1

u1

(
∂φ

∂t
+ α1∇2φ

)
dA dt = 0

or ∫ T

0

∫
Ω1

u1
∂φ

∂t
dA dt+ α1

∫ T

0

∫
Ω1

u1∇2φ dA dt = 0.
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4 COMPUTATION

Integrating the first term by parts in time and using Green’s Identity on the second term gives∫
Ω1

[
u1φ|T0 −

∫ T

0

φ
∂u1

∂t
dt

]
dA+ α1

∫ T

0

∫
Ω1

φ∇2u1 dA+

∫
∂Ω1

(
u1
∂φ

∂~n
− φ∂u1

∂~n

)
ds dt = 0

or ∫
Ω1

u1φ|T0 dA−
∫

Ω1

∫ T

0

φ

(
∂u1

∂t
− α1∇2u1

)
dt dA+ α1

∫ T

0

∫
∂Ω1

(
u1
∂φ

∂~n
− φ∂u1

∂~n

)
ds dt = 0.

The first two terms in the above expression are zero because u1 solves the heat equation and vanishes at
t = 0, while φ vanishes at t = T . Canceling the α1 gives:∫ T

0

∫
∂Ω1

(
u1
∂φ

∂~n
− φ∂u1

∂~n

)
ds dt = 0

or, factoring in the boundary of Ω1 and the conditions on the functions there,∫ T

0

∫
top

(
u1
∂φ

∂~n
− φ∂u1

∂~n

)
ds dt+

∫ T

0

∫
C(x)

(
u1
∂φ

∂~n
− φ∂u1

∂~n

)
ds dt = 0 (1)

where C(x) is defined with the downward normal.

Similarly, we can look at the region Ω2 and start with∫ T

0

∫
Ω2

u2
∂φ

∂t
dA dt+ α1

∫ T

0

∫
Ω2

u2∇2φ dA dt = 0.

Integrating the first term by parts in time and using Green’s Identity on the second term gives∫
Ω2

[
u2φ|T0 −

∫ T

0

φ
∂u2

∂t
dt

]
dA+ α1

∫ T

0

[∫
Ω2

φ∇2u2 dA+

∫
∂Ω2

(
u2
∂φ

∂~n
− φ∂u2

∂~n

)
ds

]
dt = 0.

The first term is zero because φ and u2 vanish at the endpoints in time. Since u2 solves the heat equation
in Ω2, we know that

∂u2

∂t
= α2∇2u2.

Plugging this in above gives

−α2

∫
Ω2

∫ T

0

φ∇2u2 dt dA+ α1

∫ T

0

∫
Ω2

φ∇2u2 dA dt+ α1

∫ T

0

∫
∂Ω2

(
u2
∂φ

∂~n
− φ∂u2

∂~n

)
ds dt = 0

(α1 − α2)

∫ T

0

∫
Ω2

φ∇2u2 dA dt+ α1

∫ T

0

∫
∂Ω2

(
u2
∂φ

∂~n
− φ∂u2

∂~n

)
ds dt = 0

α1 − α2

α1

∫ T

0

∫
Ω2

φ∇2u2 dA dt+

∫ T

0

∫
∂Ω2

(
u2
∂φ

∂~n
− φ∂u2

∂~n

)
ds dt = 0.

Taking the boundary of Ω2 into consideration gives

α1 − α2

α1

∫ T

0

∫
Ω2

φ∇2u2 dA dt+

∫ T

0

∫
C(x)

(
u2
∂φ

∂~n
− φ∂u2

∂~n

)
ds dt+

∫ T

0

∫
bottom

(
u2
∂φ

∂~n
− φ∂u2

∂~n

)
ds dt = 0

(2)
where C(x) has the upward normal. C(x) has two different normals in these two equations because Green’s
Identity treats the boundary of the region as a positively oriented curve with outward normal.
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4 COMPUTATION

To start, modify equation (1) using the continuity conditions on C(x), to give∫ T

0

∫
top

(
u1
∂φ

∂~n
− φ∂u1

∂~n

)
ds dt+

∫ T

0

∫
C(x)

(
u2
∂φ

∂~n
− k2

k1
φ
∂u2

∂~n

)
ds dt = 0. (3)

Then, adding equations (??) and (3) gives∫ T

0

∫
top

(
u1
∂φ

∂~n
− φ∂u1

∂~n

)
ds dt+

(
1− k2

k1

)∫ T

0

∫
C(x)

φ
∂u2

∂~n
ds dt+

α1 − α2

α1

∫ T

0

∫
Ω2

φ∇2u2 dA dt = 0.

Defining

RG(φ) =

∫ T

0

∫
top

(
u1
∂φ

∂~n
− φ∂u1

∂~n

)
ds dt (4)

and rearranging gives

RG(φ) =

(
k2

k1
− 1

)∫ T

0

∫
C(x)

φ
∂u2

∂~n
ds dt+

α2 − α1

α1

∫ T

0

∫
Ω2

φ∇2u2 dA dt.

Knowing that u2 solves the heat equation on Ω2 and that on C(x)

~n =
< C ′(x),−1 >√

C ′(x)2 + 1
and ds =

√
C ′(x)2 + 1

this expression can be written as

RG(φ) =

(
k2

k1
− 1

)∫ T

0

∫ L

0

C ′(x)φ
∂u2

∂x

∣∣∣∣
C(x)

− φ
∂u2

∂y

∣∣∣∣
C(x)

dx dt+
α2 − α1

α1α2

∫ T

0

∫
Ω2

φ
∂u2

∂t
dA dt (5)

which is the fully simplified non-linear problem.

We now look to linearize the problem to find a way to numerically solve it. We assume that the corrosion
profile, C(x), is small, or

C(x) = εC0(x)

where ε is a small positive constant, and C0(x) is an order 1 function.

The last term in equation (??) or (5) may be written as

α2 − α1

α1α2

∫ T

0

∫ L

0

∫ C(x)

0

φ
∂u2

∂t
dy dx dt.

If C(x) is small, we can approximate the function φ∂u2

∂t by a constant over the innermost integral in y. This
term can then be written as approximately equal to

α2 − α1

α1α2

∫ T

0

∫ L

0

C(x) φ
∂u2

∂t

∣∣∣∣
y=0

dx dt

where we choose to evaluate the functions at y = 0.

We also want to linearize the parts of the first integral in (5) about the line y = 0, ignoring all terms of
O(ε2). In linearizing these terms, we will use a power series expansion around y = 0, namely

f |y=γ = f |y=0 + γ
∂f

∂y

∣∣∣∣
y=0

+ γ2 ∂
2f

∂y2

∣∣∣∣
y=0

+ · · · ,
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4 COMPUTATION

and we will ignore terms of higher orders of ε that will vanish because of the linearization assumption.
Looking at the terms in (5), we have

C ′(x) φ
∂u2

∂x

∣∣∣∣
C(x)

= C ′(x) φ
∂u2

∂x

∣∣∣∣
y=0

+ C(x)C ′(x)
∂φ

∂y

∂u2

∂x

∣∣∣∣
y=0

+ C(x)C ′(x) φ
∂2u2

∂x∂y

∣∣∣∣
y=0

= C ′(x) φ
∂u2

∂x

∣∣∣∣
y=0

+O(ε2)

φ
∂u2

∂y

∣∣∣∣
C(x)

= φ
∂u2

∂y

∣∣∣∣
y=0

+ C(x)
∂φ

∂y

∂u2

∂y

∣∣∣∣
y=0

+ C(x) φ
∂2u2

∂y2

∣∣∣∣
y=0

+O(ε2)

= 0 + 0 + C(x) φ
∂2u2

∂y2

∣∣∣∣
y=0

+O(ε2)

Plugging these terms into equation (5) gives

RG(φ) =

(
k2

k1
− 1

)∫ T

0

∫ L

0

C ′(x) φ
∂u2

∂x

∣∣∣∣
y=0

− C(x) φ
∂2u2

∂y2

∣∣∣∣
y=0

dx dt+
α2 − α1

α1α2

∫ T

0

∫ L

0

C(x) φ
∂u2

∂t

∣∣∣∣
y=0

dx dt.

(6)
Integrating the first term in equation (6) by parts in x (integrating C ′(x)) gives

RG(φ) =

(
k2

k1
− 1

)∫ T

0

[
C(x)φ

∂u2

∂x

∣∣∣∣x=L

x=0

+

∫ L

0

−C(x)
∂φ

∂x

∂u2

∂x

∣∣∣∣
y=0

− C(x) φ
∂2u2

∂x2

∣∣∣∣
y=0

− C(x) φ
∂2u2

∂y2

∣∣∣∣
y=0

dx

]
dt

+
α2 − α1

α1α2

∫ T

0

∫ L

0

C(x) φ
∂u2

∂t

∣∣∣∣
y=0

dx dt

where the first term is zero because ∂u2

∂x = 0 at both sides of the rectangle. Combining the two second
derivatives into a Laplacian and separating the first term of the integral gives

RG(φ) =

(
k2

k1
− 1

)∫ T

0

∫ L

0

−C(x)
∂φ

∂x

∂u2

∂x

∣∣∣∣
y=0

dx dt−
(
k2

k1
− 1

)∫ T

0

∫ L

0

C(x) φ∇2u2

∣∣
y=0

dx dt

+
α2 − α1

α1α2

∫ T

0

∫ L

0

C(x) φ
∂u2

∂t

∣∣∣∣
y=0

dx dt.

Converting the second term to a time derivative by the heat equation and reorganizing some terms gives

RG(φ) =

(
k2

k1
− 1

)∫ T

0

∫ L

0

−C(x)
∂φ

∂x

∂u2

∂x

∣∣∣∣
y=0

dx dt−
(
k2

k1
− 1

)∫ T

0

∫ L

0

C(x)
φ

α2

∂u2

∂t

∣∣∣∣
y=0

dx dt

+
α2 − α1

α1

∫ T

0

∫ L

0

C(x)
φ

α2

∂u2

∂t

∣∣∣∣
y=0

dx dt

or

RG(φ) =

(
k2

k1
− 1

)∫ T

0

∫ L

0

−C(x)
∂φ

∂x

∂u2

∂x

∣∣∣∣
y=0

dx dt−
[(

k2

k1
− 1

)
− α2 − α1

α1

] ∫ T

0

∫ L

0

C(x)
φ

α2

∂u2

∂t

∣∣∣∣
y=0

dx dt.

Simplifying the coefficient of the second term gives(
k2

k1
− 1

)
− α2 − α1

α1
=

k2

k1
− 1− α2

α1
+ 1

=
k2

k1
− α1

α2
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4.1 Finding C(x): Least 2-Norm 4 COMPUTATION

Thus, our expression becomes

RG(φ) =

(
k2

k1
− 1

)∫ T

0

∫ L

0

−C(x)
∂φ

∂x

∂u2

∂x

∣∣∣∣
y=0

dx dt−
(
k2

k1
− α2

α1

)∫ T

0

∫ L

0

C(x)
φ

α2

∂u2

∂t

∣∣∣∣
y=0

dx dt. (7)

Now, making the assumption that the temperature profile u1 is close to the uncorroded temperature profile
u0, which is reasonable in the case that C(x) is small, we get

u1 = u0 + εũ1.

We evaluate this expression on the curve C(x) to obtain

u2|C(x) = u1|C(x) = u0|C(x) + ε ũ1|C(x) .

Linearizing the far left and far right about y = 0 gives

u2|y=0 + C(x)
∂u2

∂y

∣∣∣∣
y=0

+O(ε2) = u0|y=0 + C(x)
∂u0

∂y

∣∣∣∣
y=0

+O(ε2) + ε ũ1|y=0 +O(ε2).

Since
∂u2

∂y

∣∣∣∣
y=0

=
∂u0

∂y

∣∣∣∣
y=0

= 0

we are left with
u2|y=0 = u0|y=0 +O(ε).

Integrating the last term of equation (7) by parts in time will generate a set of functions which can be used
to numerically solve for the function C(x).

RG(φ) =

(
k2

k1
− 1

)∫ T

0

∫ L

0

−C(x)
∂φ

∂x

∂u0

∂x

∣∣∣∣
y=0

dx dt−
(
k2

k1
− α2

α1

)[
u0φ|T0 −

∫ T

0

∫ L

0

C(x)
u0

α2

∂φ

∂t

∣∣∣∣
y=0

dx dt

]

=

(
1− k2

k1

)∫ T

0

∫ L

0

C(x)
∂φ

∂x

∂u0

∂x

∣∣∣∣
y=0

dx dt+

(
k2

k1
− α2

α1

)∫ T

0

∫ L

0

C(x)
u0

α2

∂φ

∂t

∣∣∣∣
y=0

dx dt

=

∫ L

0

C(x)

[∫ T

0

(
1− k2

k1

)
∂φ

∂x

∂u0

∂x

∣∣∣∣
y=0

+

(
k2

k1
− α2

α1

)
u0

α2

∂φ

∂t

∣∣∣∣
y=0

dt

]
dx

and, defining

wk(x) :=

∫ T

0

(
1− k2

k1

)
∂φk
∂x

∂u0

∂x

∣∣∣∣
y=0

+

(
k2

k1
− α2

α1

)
u0

α2

∂φk
∂t

∣∣∣∣
y=0

dt

we are looking for solutions to the system of integral equations,

RG(φk) =

∫ L

0

C(x)wk(x)dx (8)

with 1 ≤ k ≤M .

4.1 Finding C(x): Least 2-Norm

From the previous section, we are looking for a solution to the system of equations

RGk =

∫ L

0

C(x)wk(x) dx (9)
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6 RESULTS AND CONCLUSIONS

for 1 ≤ k ≤M .

In order to specify a single solution, we look for the function C(x) with the smallest L2 norm. The
approximation for the function C(x) with this property must be a linear combination of the wk functions,
or

C(x) =

M∑
i=1

λiwi(x).

Plugging this into equation (9) gives

RGk =

∫ L

0

M∑
i=1

λiwi(x)wk(x) dx

=

M∑
i=1

λi

∫ L

0

wi(x)wk(x) dx.

Defining the coefficient matrix B by

Bik =

∫ L

0

wi(x)wk(x) dx

gives

RGk =

M∑
i=1

Bikλi

for 1 ≤ k ≤M , or
~RG = B~λ.

Then calculating ~λ via B−1 ~RG and letting

C(x) =

M∑
i=1

λiwi(x)

gives an approximation for the corrosion profile in the system.

5 Ill-posedness

• The matrix B is ill-conditioned, i.e., B has very small eigenvalue, so B−1 has very large ones. Therefore,
a small variance in the data will give large changes in this value. Also, it makes the function super
large.

• Therefore, we need to regularize the matrix in order to get a reasonable result out of this computation.
We do this by setting a lower bound on the singular values of B, and removing those from the matrix
of B−1.

• Leads to a more accurate reconstruction of the corrosion profile.

6 Results and Conclusions

• Sketch some of the results.

• Averaging over three different fluxes.

• Summarize the overall conclusions.
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