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Abstract

Traditionally, separation of variables is the first technique introduced for solving
homogeneous partial differential equations. However, this technique is inadequate out-
side of very simple domains and homogeneous equations. If this method can not be
applied, a solution can be developed using fundamental solutions to the differential op-
erator and Greens functions. In this talk, basic distribution theory will be presented in
order to define the fundamental solution of a linear differential operator and show how
it can be used to solve the Dirichlet problem. The Laplace operator will be discussed
in detail to show this construction and what it implies about the regularity of solutions
to Laplaces and Poissons Equations.

1 Introduction

If we are given a nice domain and a homogeneous PDE on it, with some boundary/initial
conditions, separation of variables can sometimes be used to solve the equation. *Draw
box with the heat equation* However, this only works for the most simple situations. For
example, if the system is inhomogeneous, separation of variables will be very difficult, if not
impossible. The other problem is if the domain is not simple. *Draw crazy domain*. In
either of these cases, separation of variables will not be useful in trying to solve the Dirichlet
problem. So, we need a new method. In the case of the crazy domain, it may be possible
to transform it into a more reasonable region, but another way that works in these regions
uses fundamental solutions and Green’s functions. Fundamental solutions will let us solve
the inhomogeneous problem in all of Rn, and the Green’s function will allow us to restrict
this solution to a domain and add in a boundary condition.{

∆u = f x ∈ Ω

u = 0 x ∈ ∂Ω

{
∆u = 0 x ∈ Ω

u = g x ∈ ∂Ω

Since we want to construct these solutions in complete generality, we need to consider
cases where f is not continuous. In these cases, the solution u will not have continuous
derivatives of high enough orders to check the solution directly. To deal with this issue,
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2 BASIC DEFINITIONS/DISTRIBUTIONS

we need the theory of distributions, which will allow us to take the necessary number of
derivatives, even if they aren’t continuous.

Once we have distributions, we will be able to define the fundamental solution of a
differential operator. Finally, from the fundamental solution, we can develop a formulation
of Green’s functions, which will allow us to solve the Dirichlet problem on a very general
level. The analysis here follows that in Folland’s book on PDE.

2 Basic Definitions/Distributions

The first step in this process is to develop a small amount of the theory of distributions in
order to use them to solve the given differential equations. This idea was originally proposed
by Sergei Sobolev in 1935, and was formalized in its entirety by Laurent Schwartz in the
1940s. We begin with some basic definitions. Let Ω be a subset of Rn.

Definition 2.1. A multi-index α is a vector of the form α = (α1, ..., αn). |α| =
∑
αj and

α! = α1! · · ·αn!. We denote partial derivatives using multi-indices by

∂α =
∂α1

∂xα1
1

∂α2

∂xα2
2

· · · ∂
αn

∂xαnn
.

Definition 2.2. The space of smooth functions in Ω with compact support is denoted
C∞c (Ω). We say that a sequence of function φj ∈ C∞c (Ω) converges to φ in C∞c (Ω) if all of
the φj and φ are supported in a common compact subset of Ω and ∂αφj → ∂αφ uniformly
for all multi-indices α.

Remark. This definition of convergence in C∞c (Ω) comes from the locally convex topology
on this space.

Definition 2.3. Let u be a linear functional on C∞c (Ω) (i.e. a linear map from C∞c (Ω)→ R).
We denote the value obtained by applying u to φ ∈ C∞c (Ω) by 〈u, φ〉.

This is very suggestive notation as we will soon see.

Definition 2.4. A distribution is a linear functional on C∞c (Ω) that is continuous in the
sense that if φj → φ in C∞c (Ω), then 〈u, φj〉 → 〈u, φ〉.

But, what are these distributions? In some instances, they are called “generalized func-
tions” because all reasonable functions are also distributions.

Example 2.1. Any locally integrable function f is a distribution under the action suggested
by the notation above

〈f, φ〉 =

∫
Ω

fφ dx.

Since φ has compact support, we only need f to be locally integrable for this to be
well-defined.
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2 BASIC DEFINITIONS/DISTRIBUTIONS

Example 2.2. Any locally finite measure on Rn is a distribution under the action

〈µ, φ〉 =

∫
Ω

φ dµ.

In particular, with this last example, the Dirac delta “function” is a distribution, since
it can be defined using the Dirac (point mass) measure at 0. I can write δ and not feel bad
about it!

The main goal with considering these distributions was to give us a new class of potential
solutions to differential equations. So, we want to apply linear differential operators to them.
If T is a continuous linear operator on C∞c (Ω) in the sense that if φj → φ, then Tφj → Tφ,
and there exists another linear operator T ′ such that for any φ, ψ ∈ C∞c (Ω)∫

Ω

(Tφ)ψ dx =

∫
Ω

φ(T ′ψ) dx

then we can have T act on distributions by the formula

〈Tu, φ〉 = 〈u, T ′φ〉.

In this case, T ′ is called the dual or transpose operator of T . Thus, by considering
various operators and how they act on functions in C∞c (Ω), we can see how to apply them
to distributions.

Example 2.3. If T is multiplication by a function f , then T ′ = T , and we can multiply
distributions by functions according to the formula

〈uf, φ〉 = 〈u, fφ〉.

Example 2.4. If T = ∂α, then integration by parts shows that T ′ = (−1)|α|∂α. Since the
functions all have compact support, all boundary terms vanish.

Example 2.5. Using above. If T = ∆, T ′ = ∆. Thus we can apply the Laplacian to
distributions by the formula

〈∆u, φ〉 = 〈u,∆φ〉.

Also, if T is the heat operator, ∂t −∆, then T ′ = −∂t −∆.

Finally, we need to characterize what we mean by a distribution satisfying a linear oper-
ator.

Definition 2.5. Two distributions u, v are equal on V open set if 〈u, φ〉 = 〈v, φ〉 for all
φ ∈ C∞c (V ).

Definition 2.6. Given a linear differential operator L, a distribution u is a weak solution
to L (or solves L in the weak sense) if Lu = 0 on Ω as distributions.
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3 FUNDAMENTAL SOLUTION

3 Fundamental Solution

Given a linear differential operator L, we want to develop a way to solve Lu = f in the weak
sense on all of Rn.

Definition 3.1. A Fundamental Solution to a linear differential operator L is a distri-
bution K such that LK = δ.

This will allow us to solve the inhomogeneous problem, because if f ∈ C∞c , then taking
u = K ∗ f gives

Lu = L(K ∗ f) = LK ∗ f = δ ∗ f = f

Another property of distributions is that if they have compact support, we can also
define a convolution of distributions. Thus, we can similarly solve this problem when f is a
distribution with compact support.

One of the most important properties of fundamental solutions is that they exist under
certain circumstances. This theorem was proved separately by Bernard Malgrange and Leon
Ehrenpreis.

Theorem 3.1 (Malgrange-Ehrenpreis). Every linear differential operator with constant co-
efficients has a fundamental solution.

In order to explore this concept, I will next go on to showing how one would find the
fundamental solution for a particular differential operator, the Laplacian. Namely, we are
looking for a distribution N that satisfies

〈N,∆φ〉 = 〈∆N, φ〉 = 〈δ, φ〉 = φ(0).

Since ∆N = δ, N needs to be harmonic on Rn \ {0}. Since the Laplacian commutes
with rotations (Fourier Transform commutes with rotations and the symbol of ∆ is radial),
this distribution should be radial, because the result of ∆N = 0 is also radial. For radial
functions, calculations with the Laplacian can be drastically simplified.

Theorem 3.2. If f(x) = φ(r), where r = |x|, x ∈ Rn then

∆f(x) = φ′′(r) +
n− 1

r
φ′(r)

Proof. Since ∂r
∂xj

=
xj
r

, we can apply the chain rule to get

∆f(x) =
n∑
1

∂

∂xj

[xj
r
φ′(r)

]
=

n∑
1

[
x2
j

r2
φ′′(r) +

1

r
φ′(r)−

x2
j

r3
φ′(r)

]
= φ′′(r) +

n

r
φ′(r)− 1

r
φ′(r).

�
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3.1 Regularity Properties 3 FUNDAMENTAL SOLUTION

Corollary 3.1. If f(x) = φ(r) is a radial function, then ∆f = 0 on Rn \ {0} if an only if
φ(r) = a+ br2−n (n 6= 2) or φ(r) = a+ b log r (n = 2).

This statement above suggest a form for the fundamental solution of the Laplacian. Since
the constant a is harmonic no matter what, we can ignore it. Therefore, we just need to
find the proper constant b such that ∆N = δ in the sense of distributions, or the integration
gives φ(0) as opposed to some multiple of this value.

Theorem 3.3. The fundamental solution to the Laplacian is

N(x) =
|x|2−n

(2− n)ωn
(n 6= 2) or N(x) =

1

2π
log |x| (n = 2)

where ωn is the area of the unit sphere in Rn.

Remark. This function is normally denoted N in honor of Newton, as it is the gravitational
potential generated by a unit point mass at the origin.

3.1 Regularity Properties

In particular, this fundamental solution is continuous on Rn\{0}, which, by another theorem,
implies that ∆ is hypoelliptic, which directly gives us that:

Proposition 3.1. If f ∈ C∞(Ω), then u ∈ C∞(Ω).

There are some other minor conditions on f that will give good properties with respect to
solutions of ∆u = f . I will not prove any of these, but will state them here for completeness.

Proposition 3.2. If f ∈ L1(Rn), then f ∗N is well defined as a locally integrable function,
and ∆(f ∗N) = f .

Now, but what about finite orders of differentiability? A first guess would be to say that
if f = Ck(Ω), then u = Ck+2(Ω). However, this fails to be true (in n > 1), but by moving
to a different set of function spaces, a similar statement does hold.

Proposition 3.3. Suppose k ≥ 0, 0 < α < 1, and Ω is an open set in Rn. If f ∈ Ck+α(Ω)
and u is a distribution solution of ∆u = f on Ω, then u ∈ Ck+2+α(Ω).

So, this gives us a way to solve the inhomogeneous problem on all of Rn. It also shows
some of the results of Elliptic Regularity Theory, which says that u will be as regular as f
allows it to be.
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4 GREEN’S FUNCTIONS

4 Green’s Functions

So, for the last part of the talk, I want to discuss the method restricting these solutions to
a given domain, and incorporating the Dirichlet data into the solution. We want to be able
to solve the two different types of problems{

∆w = 0 x ∈ Ω

w = g x ∈ ∂Ω

{
∆v = f x ∈ Ω

v = 0 x ∈ ∂Ω
.

In order to do this, we are going to define the Green’s Function for the given domain Ω.
In order to simplify notation later on, we write

N(x, y) = N(x− y)

as the fundamental solution of a linear operator L.

Definition 4.1. The Green’s Function of the linear differential operator L for the bounded
domain Ω with smooth boundary S is the function G(x, y) on Ω × Ω with the following
properties:

(a) L(G(x, ·)−N(x, ·)) = 0 in Ω and G(x, ·)−N(x, ·) is continuous in Ω.

(b) G(x, y) = 0 for each x ∈ Ω, y ∈ S.

Remark. If G exists, it is unique because for each x ∈ Ω, it is the solution to the Dirichlet
Problem, LG(x, ·) = 0, G(x, y) = −N(x, y), y ∈ S.

This theory will work for any linear differential operator, but in order to move further
into the analysis, we will go back to dealing with the Laplace operator. If we assume that
Green’s functions exist (which they do, and I will not be proving it here), it is C∞ on Ω\{x}
and we can show that

Lemma 4.1. G(x, y) = G(y, x) ∀x, y ∈ Ω.

Proof. For any x, y set u(z) = G(x, z) and v(z) = G(y, z). Then ∆u(z) = δ(x − z) and
∆v(z) = δ(y − z). Then, formally applying Green’s Identity gives

G(x, y)−G(y, x) =

∫
Ω

G(x, z)δ(y − z)−G(y, z)δ(x− z) dz

=

∫
Ω

G(x, z)∆v(z)−G(y, z)∆u(z) dz

=

∫
S

G(x, z)∂nzG(y, z)−G(y, z)∂nzG(x, z) dσ(z) = 0

Because the Green’s function is zero on the boundary. �
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5 EXAMPLES

Since it is symmetric, we can extend the Green’s Function to a function on Ω × Ω that
is also harmonic in the second argument. So, now we can use this Green’s Function to solve
our problems.

Proposition 4.1. The functions v and w below satisfy the Dirichlet problems above:

v(x) =

∫
Ω

G(x, y)g(y) dy w(x) =

∫
S

h(y)∂nyG(x, y) dσ(y) =

∫
S

h(y)∇yG(x, y) · ~n dσ(y).

Proof. The claim for v can be easily proven.

v(x) =

∫
Ω

G(x, y)f(y) dy

=

∫
Ω

N(x, y)f(y) dy +

∫
Ω

[G(x, y)−N(x, y)]f(y) dy

= f ∗N(x) +

∫
Ω

[G(x, y)−N(x, y)]f(y) dy

and this second part is harmonic in x. Furthermore, for x on the boundary, v(x) = 0 because
G(x, y) = 0. �

For w, the claim is a little more tricky, because it needs to be shown that w extends
continuously to the boundary and is equal to h there.

The function ∂nyG(x, y) on Ω× S is called the Poisson Kernel for Ω. This formula is
therefore integrating the boundary values of w against this kernel to determine the values
everywhere inside Ω.

5 Examples

Here, I will show the example of the Poisson Kernel and Green’s function in the unit ball in
Rn.

Now, we want to take a unit ball, B1(0), in Rn, and solve the Dirichlet problem via the
Green’s function and Poisson kernel. The idea is the same as in the half space, since a unit
charge at x can be canceled by a charge at x/|x|2, which is what you get when you reflect x
over the sphere. This second charge, however, must have magnitude |x|2−n in order to cancel
the first one on the sphere.

Lemma 5.1 ([1] 2.46). If x, y ∈ Rn, x 6= 0, and |y| = 1, then

|x− y| =
∣∣|x|−1x− |x|y

∣∣ .
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5 EXAMPLES

Proof. We have

|x− y|2 = |x|2 − 2x · y + 1

=
∣∣|x|y∣∣2 − 2(|x|−1x) · (|x|y) +

∣∣|x|−1x
∣∣2

=
∣∣|x|y − |x|−1x

∣∣2 . �

For the case n > 2, we define

G(x, y) = N(x, y)− |x|2−nN(|x|−2x, y)

=
1

(2− n)ωn

[
|x− y|2−n −

∣∣|x|−1x− |x|y
∣∣2−n] .

In looking at the first equation, we can see that G(x, y)−N(x, y) is harmonic if

∆N(|x|−2x, y) = 0 ⇔ y 6= |x|−2x

However, ||x|−2x| = |x|−1, so if x ∈ B1(0), |x| < 1 and |x|−1 > 1. If y = |x|−2x and
x ∈ B1(0), then |y| > 1, so y 6∈ B1(0). Therefore, G(x, y) − N(x, y) is harmonic on B1(0).
Also, if |y| = 1, the lemma gives us that G(x, y) = 0 by the second equation. A direct
calculation can also show that G(x, y) = G(y, x).

In the case n = 2 we have a similar formula

G(x, y) =
1

2π

[
log |x− y| − log

∣∣|x|−1x− |x|y
∣∣] (x 6= 0)

G(0, y) =
1

2π
log |y|.

From the Green’s function, we can compute the Poisson kernel for solving the Dirichlet
problem:

P (x, y) = ∂νyG(x, y) x ∈ B1(0), y ∈ S1(0)

which can be calculated for n ≥ 2 using ∂νy = y · ∇y on S1(0) as

P (x, y) =
−1

ωn

[
y · (x− y)

|x− y|n
− |x|y · (|x|

−1x− |x|y)

||x|−1x− |x|y|n
]

Using Lemma 5.1, since |y| = 1, this simplifies to

P (x, y) =
1− |x|2

ωn|x− y|n
.

If we want to solve the Dirichlet problem

∆u = f on B1(0) u = 0 on S1(0)

we can use the function

u(x) =

∫
B1(0)

G(x, y)f(y) dy

and if we want to solve the dual problem we need the Poisson kernel.
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5 EXAMPLES

Theorem 5.1 ([1] 2.48). If f ∈ L1(S1(0)) and P is as computed above, set

u(x) =

∫
S

P (x, y)f(y) dσ(y) (x ∈ B1(0)).

Then u is harmonic on B1(0). If f is continuous, u extends continuously to B1(0) and
u = f on S1(0). If f ∈ Lp(S)(1 ≤ p < ∞), then ur → f in the Lp norm as r → 1, where
ur(y) = u(ry), y ∈ S1(0).

Proof. In this proof, in order to simplify notation, define

B := B1(0) S := S1(0).

For each x ∈ B, P (x, y) is bounded for all y in S, since |x − y| 6= 0 ∀ y ∈ S, so the
function u(x) is well-defined. Since G(x, y), and therefore P (x, y) is harmonic in x, u is also
harmonic.

Claim 1 For any y0 ∈ S and any neighborhood V of y0 in S,

lim
r→1

∫
S\V

P (ry0, y) dσ(y) = 0.

Proof.

P (ry0, y) =
1− r2

ωn|ry0 − y|n

The denominator of this function is uniformly bounded away from 0 for |r| < 1 and outside of
a neighborhood of y0. Thus, the integral is defined, and the integrand goes to 0 as r → 1. �

Claim 2
∫
S
P (x, y) dσ(y) = 1 ∀x ∈ B.

Proof. Since P is harmonic in x, we can use the mean value property around 0 to get that

ωnP (0, y) =

∫
S

P (ry′, y)dσ(y′)

for any r ∈ (0, 1), which defines a sphere around the origin. However,

P (0, y) =
1− 0

ωn|0− y|n
=

1

ωn
∀ y ∈ S

and the lemma above gives that P (ry′, y) = P (ry, y′). Setting x = ry ∈ B gives

1 = ωn
1

ωn
=

∫
S

P (x, y′) dσ(y′). �
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6 APPENDIX

Suppose that f is continuous on S, which means it is uniformly continuous. Given ε > 0,
choose δ > 0 such that |x− y| < δ ⇒ |f(x)− f(y)| < ε

2
. Define Vx = {y ∈ S : |x− y| < δ }.

Then, for any x ∈ S, r < 1

|f(x)− u(rx)| =

∣∣∣∣∫
S

[f(x)− f(y)]P (rx, y) dσ(y)

∣∣∣∣
≤ sup

y∈Vx
{|f(x)− f(y)|}

∫
Vx

P (rx, y) dσ(y) + 2 sup
x∈S\Vx

{|f(x)|}
∫
S\Vx

P (rx, y) dσ(y)

The first term is less than ε
2
, since we are on Vx and the integral is less than 1 by claim

2. Similarly, there is an δ′ such that if 1− r < δ′, then the value of the integral in the second
term is less than ε

4||f ||∞ . Therefore, this sum is less than ε, and ur → f as r → 1, and u

extends continuously to B with u = f on S.

Finally, suppose f ∈ Lp. Given ε > 0, choose g ∈ C(S) with ||g − f ||p ≤ ε
3
, which exists

because C(S) is dense in Lp. Setting v(x) =
∫
S1(0)

P (x, y)g(y) dσ(y), we have

||f − ur||p ≤ ||f − g||p + ||g − vr||p + ||vr − ur||p.

The first term on the right is less than ε
3

by definition, and the second term is also less
than ε

3
if 1 − r is small enough. The third term can be shown to be smaller than ε

3
by

the generalized Young’s Inequality, since P is a positive function with integral 1 on S, and
||f − g||p ≤ ε

3
. Therefore, this sum is less than ε, and ur → f in the Lp norm as r → 1.

�

6 Appendix

Proof 1. Using Green’s Identities. Consider the case n 6= 2.

Take any φ ∈ C∞c . Define Ω = Br(0) \Bε(0), removing a small ball around the origin, where
r has been chosen such that the support of φ is contained in Br(0).

Then ∫
Ω

N∆φ dx =

∫
Ω

N∆φ− φ∆N dx

=

∫
∂Ω

N∂νφ− φ∂νN dσ

=

∫
Sr(0)

N∂νφ− φ∂νN dσ +

∫
Sε(0)

N∂νφ− φ∂νN dσ

where the first line uses the fact that N is harmonic in Ω, and Green’s Identity is applied to
get to the second line.
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6 APPENDIX

Since N is of the form b|x|2−n, taking the outward normal of the sphere gives that on
Sρ(0).

N = bρ2−n

∂νN = b(2− n)ρ1−n

∂νφ = ν · ∇φ =
1

ρ

∑
xj∂jφ

Plugging this in with ρ = r and ρ = ε, gives∫
Ω

N∆φ dx =

∫
Sr(0)

br2−n∂νφ− φ · b(2− n)r1−n dσ +

∫
Sε(0)

bε2−n∂νφ+ φ · b(2− n)ε1−n dσ

However, since the support of φ is contained in Br(0), both φ and ∂νφ are identically
zero on Sr(0). So the first integral vanishes and we are left with

∫
Ω

N∆φ dx =

∫
Sε(0)

bε2−n
1

ε

n∑
j=1

xj∂jφ+ φ · b(2− n)ε1−n dσ

=
b

εn−1

∫
Sε(0)

n∑
j=1

xj∂jφ+ φ(2− n) dσ

= bωn

[
1

εn−1ωn

∫
Sε(0)

n∑
j=1

xj∂jφ dσ +
2− n
εn−1ωn

∫
Sε(0)

φ dσ

]

Then, sending ε to zero gives that

〈N,∆φ〉 =

∫
Rn
N∆φ = lim

ε→0

∫
Ω

N∆φ

= lim
ε→0

bωn

[
1

εn−1ωn

∫
Sε(0)

n∑
j=1

xj∂jφ dσ +
2− n
εn−1ωn

∫
Sε(0)

φ dσ

]

= bωn

[
lim
ε→0

1

εn−1ωn

∫
Sε(0)

n∑
j=1

xj∂jφ dσ + lim
ε→0

2− n
εn−1ωn

∫
Sε(0)

φ dσ

]
= bωn[0 + (2− n)φ(0)] = b(2− n)ωnφ(0)

where the expression is simplified in the last line because the average value of φ on Sε(0),

1

εn−1ωn

∫
Sε(0)

φ dσ → φ(0)

as ε→ 0. Also, since φ and ∂φ are continuous, they are bounded as ε→ 0, and
∑
xj∂jφ is

of order ε as ε goes to zero, so that integral vanishes.
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Since we want 〈N,∆φ〉 = φ(0), we set b = 1
(2−n)ωn

, giving

N(x) =
|x|2−n

(2− n)ωn

as the fundamental solution. �

Another proof of the fundamental solution for ∆ uses some notation that will be employed
later, so it will be shown here.

Proof 2. Smoothed Functions. Consider the case n 6= 2.

Define

N ε(x) =
(|x|2 + ε2)(2−n)/2

(2− n)ωn
.

N ε → N pointwise as ε → 0, and N ε are all dominated by a locally integrable function
(|N |) as ε → 0, so by the dominated convergence theorem N ε → N in the topology of
distributions. Therefore, we need to show that

∆N ε → δ or 〈∆N ε, φ〉 → φ(0) ∀φ ∈ C∞c as ε→ 0

Calculation shows that

∆N ε(x) =
n

ωn
ε2(|x|2 + ε2)−(n+2)/2 = ε−nψ(ε−1x)

where
ψ(x) = ∆N1(x) =

n

ωn
(|x|2 + 1)−(n+2)/2.

Since the function is radial ∆N ε(−x) = ∆N ε(x) and

〈∆N ε, φ〉 =

∫
∆N ε(x)φ(x) dx =

∫
∆N ε(−x)φ(x) dx = φ ∗∆N ε(0)→ aφ(0)

where a =
∫
ψ(x) dx by approximations to the identity (Theorem ??). However, integration

in polar coordinates gives∫
ψ(x) dx = n

∫ ∞
0

(r2 + 1)−(n+2)/2rn−1 dr =
n

2

∫ 1

0

s(n−2)/2 ds = 1

by the substitution s = r2

r2+1
.

Therefore 〈∆N ε, φ〉 → φ(0), and N is a fundamental solution of ∆. �
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