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Abstract

When one is trying to numerically solve the scattering problem for the wave equation or the Helmholtz
equation, one often runs into problems because the computation domain is infinite. We would like to
truncate the domain to facilitate computational solutions, however, we still need to make sure that (a)
the solution still satisfies the desired radiation condition at infinity and (b) the truncation does not
cause any extra reflections/affect the solution in the region of interest. Perfectly Matched Layers (PML)
provide a method to do exactly this, by adding a specific layer of material to the outside of the region of
interest that will absorb all of the radiation coming to it without causing any reflections. In this talk, I
will present a basic introduction to and formulation of PML, as well as state some results by Lassas and
Somersalo that prove that this method does not change the value of the solution in the region of interest.

1 Introduction/Motivation

One of the classical problems that people try to solve with the Wave or Helmholtz Equation is the external
scattering problem. For a more complicated domain Ω, the problem must generally be solved numerically,
which then becomes problematic because the computation region is infinite. In order to solve this problem,
we need to truncate the computation region, which would normally be done with a Dirichlet or Neumann
condition on the boundary. However, since we are dealing with wave-type equations, this type of simple
solution is not possible. Imposing this kind of condition on the boundary of a large domain would result in
reflections back into the region of interest, which will change the solution there. The solutions will decay at
infinity, but not fast enough to make this kind of truncation viable. The infinite solution would not be the
same as the solution from the finite, truncated domain, which is not what we want. We would like whatever
solution we get to work for any radiation reaching the boundary, as well as cause minimal reflections back
into the region of interest.

Perfectly Matched Layers (PML) provide a solution of this kind. It involves adding a special layer of
material around the region of interest, where the material may be non-physical. The parameters of this
material are chosen to convert oscillatory functions into exponentially decaying waves. These waves can
then be truncated with a Dirichlet or Neumann condition, which will cause reflections, but since the waves
have decayed exponentially in terms of the thickness of the layer, the amount of reflection is negligible. This
type of formulation will work for both the wave equation and the Helmholtz equation, but the only error
bounds that we have currently are from Lassas and Somersalo about the Helmholtz equation. The full wave
equation poses some other interesting problems, which will be discussed over the course of the talk.

There will be two main parts to this talk. The first will discuss the formulation of PML in the case of
Cartesian coordinates and the wave equation. In this, we will see how the frequency shows up in a way that
causes problems for solving this equation for an arbitrary set of frequencies. In the second part of the talk,
we will restrict to the Helmholtz equation in polar coordinates and look at the more rigorous development
of this procedure. By being more careful about all of the choices we make in this process, we can prove that
the solution will be exponentially close to the infinite solution as we expand the computation region.
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2 BASIC FORMULATION

2 Basic Formulation

We are trying to solve the scattering wave equation in an external domain, with the outgoing radiation
condition. Restricting ourselves to R2, we have

∂2p

∂t2
− c2∆p = 0 in R2 \ Ω

p = −pinc on ∂Ω (1)

We consider a plane-wave, time harmonic solution to this equation; namely, we take

p(x, t) = Cei(
~k·~x−ωt)

and we will want any solution we have to work for all plane-waves and superpositions of them. Now, if we
look at this equation and isolate the positive x direction, we see that we have

p(x, t) = Ceikxxeikyye−iωt.

So, if we were to somehow make the x-direction have a positive imaginary part, the exponential in the
x-direction would have a decaying factor, so the oscillations would go to zero rapidly as x increased, possibly
allowing us to truncate the region with minimal reflections. This is exactly what we do.

Firstly, in order to make all of this work, we assume that the space outside of the “region of interest” is
homogeneous, linear, and time-invariant. The process for forming the PML consists of three main steps.

(a) Analytically continue the solutions to complex-valued x. We currently have a solution p(x, y, t) that is
valid for all real-valued x, and since it is a complex exponential, we can analytically continue it to the
complex plane. Now, since the space outside of the region of interest was assumed to be x-invariant, the
solution in the complex plane still solves the same differential equation. Since x only shows up in the
equation as ∂

∂x , this expression is still the same whether or not x is complex-valued. The derivative in
any dx direction is the same. Our original solution can still be found on the real axis, where Im x = 0.

(b) Pick a complex contour on which to solve the differential equation/evaluate the function. We now pick
a contour in the complex plane that will give us the desired exponential decay of the waves, but still
leave the solution unchanged in the region of interest. If we denote the complex contour by x̃, we define

x̃ = x+ if(x) ∂x̃ = (1 + i
df

dx
)∂x

where f(x) = 0 for small x (in the region of interest) and f(x) > 0 outside, then this will give us a
desired contour. Since the equation is unchanged for any dx direction, we have that our original wave
equation is now of the form

∂2p

∂t2
− c2 ∂

2p

∂x̃2
− c2 ∂

2p

∂y2
= 0

and the solutions to this equation will have the desired exponential decay outside of the region of
interest. However, solving differential equations on complex contours is difficult so we...

(c) Coordinate Transform back to Real x. In this step, we simply invert the transformation to get back
to an expression that only involves the real-valued x. For notational purposes, we denote

df

dx
=
σx(x)

ω

so we then have that

∂x̃ =

(
1 + i

σx(x)

ω

)
∂x
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2.1 System Approach: ADE 2 BASIC FORMULATION

(the significance of the ω will be discussed later). Therefore, we have the transform

∂

∂x̃
=

1(
1 + iσx(x)

ω

) ∂

∂x

which will convert the equation back to real-valued x. This gives a much more complicated equation
to solve, which we will see explicitly for the radial case later, but it will have the desired decay outside
of the region of interest.

(d) Truncate the computation domain. At this point, the step is fairly simple. Since the waves are all
exponentially decaying, we can just put a Dirichlet Boundary a certain distance into the PML layer,
and the reflections will be negligible. Thus, by adding this fictitious layer of material, we have been
able to truncate the computation domain without adding any extra reflections and without changing
the solution in the region of interest.

2.1 System Approach: ADE

In order to investigate how this change of variables affect the PDE that we are trying to solve, we will look
at the wave equation in terms of a system. Namely, we write

∂u

∂t
= b∇ · ~v ∂~v

∂t
= a~∇u

We will also assume that all of our solutions are time-harmonic, that is, there is a time-dependence of
the form e−iωt. We will now try to implement the PML approach to the wave equation in 1 and 2 space
dimensions.

2.1.1 One Space Dimension

The 1− d system, adding in the time-harmonic dependence of the functions, now becomes

∂u

∂t
= b

∂v

∂x
= −iωu ∂v

∂t
= a

∂u

∂x
= −iωv

If we now make the transform described before

∂

∂x
→ 1(

1 + iσx(x)
ω

) ∂

∂x

and multiply both sides by 1 + iσx(x)
ω gives

b
∂v

∂x
= −iωu+ σxu a

∂u

∂x
= −iωv + σxv

which can easily be transformed back into time-domain to

∂u

∂t
= b

∂v

∂x
− σxu

∂v

∂t
= a

∂u

∂x
− σxv

For σx > 0, we see that the solutions will decay in both space and time. Also, the point of choosing
σx/ω is clear, as the decay is now independent of frequency. If we had just used σ the rate at which waves
decayed would depend So, making this PML transformation has changed the form of the PDE, but doesn’t
make it any more difficult to solve numerically.
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2.1 System Approach: ADE 2 BASIC FORMULATION

2.1.2 Two Space Dimensions

In the two dimensional case, however, we see some of the problems of PML developing. We start with the
system presentation again.

∂u

∂t
= b

∂vx
∂x

+ b
∂vy
∂y

= −iωu ∂vx
∂t

= a
∂u

∂x
= −iωvx

∂vy
∂t

= a
∂u

∂y
= −iωvy

The third equation will not be affected by the PML transformation in the x-direction, and we do the
same process as the 1-dimensional case on the first two equations. Making the derivative transformation and
clearing the denominators gives

b
∂vx
∂x

+ b
∂vy
∂y

(
1 + i

σx
ω

)
= −iωu+ σxu a

∂u

∂x
− iωvx + σxvx

The second equation here is fine, and so is most of the first. There is one term that will have a problem,
namely

bi
σx
ω

∂vy
∂y

since, when transformed back, the i
ω becomes an integral, which we have no way to represent in these

equations. Therefore, in order to be able to solve these equations, we define an auxiliary function ψ, which
satisfies

−iωψ = bσx
∂vy
∂y

so then we can write this troublesome equation as

b
∂vx
∂x

+ b
∂vy
∂y

+ ψ = −iωu+ σxu

Now, everything can be transformed back to the time-domain to give a system of 4 equations

∂u

∂t
= b∇ · v − σxu+ ψ

∂vx
∂t

= a
∂u

∂x
− σxvx

∂vy
∂t

= a
∂u

∂y

∂ψ

∂t
= bσx

∂vy
∂y

This last equation was more or less created by this PML transformation and is called an auxiliary differ-
ential equation, which becomes necessary in the two-dimensional case. This adds an additional differential
equation to solve when trying to carry out these numerical calculations. For the three-dimensional case, doing
PML in each coordinate direction requires, in the best case so far, four auxiliary functions and corresponding
differential equations.

So, this PML transformation creates a different system of PDE’s to solve. However, the solution will
solve the standard wave equation where σx = 0, and will decay away rapidly outside of this region so that
we can truncate the domain.

4



3 HELMHOLTZ FORMULATION AND PROOFS

3 Helmholtz Formulation and Proofs

Now that we have an idea of how PML works, we will look at a more mathematical formulation and a proof
of the fact that the PML solution of the wave equation converges to the infinite domain solution as the
thickness of the PML layer goes to infinity. Therefore, if we are careful in the way we construct the PML
boundary, we can have our modified solution be as close as we want to the actual infinite domain solution.
This analysis will follow the work of Lassas and Somersalo.

3.1 Formulation/Notation

For this problem, we will be considering a modified electromagnetic potential, which gives rise to the
Helmholtz equation. Namely, if we consider a region in R2 as the cross section of a cylinder, with the
magnetic field parallel to the axis of the cylinder, the amplitude of this field outside of the domain satisfies

∆u+ k2u = 0

and the Sommerfeld radiation condition at infinity,

lim
r→∞

√
r

(
∂u

∂r
− iku

)
= 0.

We also assume that the obstacle is perfectly conducting, resulting in a Neumann condition on the boundary,

∂u

∂n
|∂Ω= g.

This work will also use double layer potentials to get some of the results. Denote by Ψ the fundamental
solution of the Helmholtz equation,

Ψ(x, y, k) =
i

4
H

(1)
0 (k|x− y|).

For Γ a curve in R2 and X a set disjoint from Γ, and ψ a function defined on Γ, we denote the double layer
potential by

DΓ,X(k)ψ(x) =

∫
Γ

∂Ψ

∂ny
(x, y, k)ψ(y) dS(y)

If X and Γ are the same set, we will only use a subscript Γ.

3.2 PML

In this instance, we will analyze the PML formulation in polar coordinates. Choose R1 so that Ω ⊆ BR1 .
We then define σ (the same σ as before) to be our fictitious absorption coefficient

σ(r) = 0 for r < R1 σ(r) > 0 for r > R1 lim
r→∞

∫ r

R1

σ(t)dt =∞

We then define the stretched coordinates r̃ by

r̃ = r̃(r) =

{
r r ≤ R1

r
(

1 + i
ωr

∫ r
R1
σ(t) dt

)
=: rβ(r) r > R1
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3.3 Double Layer Potentials 3 HELMHOLTZ FORMULATION AND PROOFS

The new solution, called the Berenger solution after the first person to develop this method, is defined
as the solution to the stretched system of equations, namely, it solves

1

r̃

∂

∂r̃

(
r̃
∂uB
∂r̃

)
+

1

r̃2

∂2uB
∂θ2

+ k2uB = 0

∂uB
∂n
|∂Ω = g

|uB | is bounded in R2 \ Ω

By denoting
∂r̃

∂r
= 1 +

i

ω
σ(r) =: α(r)

we can transform variables back to see that uB solves

1

r

∂

∂r

(
β

α
r
∂uB
∂r

)
+
α

β

1

r2

∂2uB
∂θ2

+ k2αβuB = 0

We can also write this equation in a coordinate-less form (∇ · A∇ + αβk2)u = 0, where the matrix A,
representing a conductivity, is now non-physical. The main work of Berenger shows that this system has a
unique solution that is reflectionless at the boundary. It also shows that this solution, uB = usc inside of
B1. That is, adding this PML layer did not change the value of the solution inside of the ball of radius R1,
which is exactly what we want.

Now, at this point, we have constructed an infinite PML layer that gives us the ideal result. However,
this has not addressed the main problem with solving this problem numerically, that is, the unboundedness
of the domain. In order to move forward with truncating the domain, we pick R2 > R1 and impose another
constaint on σ, namely that for r > R2

σ(r) = σ0 =
1

R2

∫ R2

R1

σ(t) dt

This gives us that for all r > R2,

α(r) = 1 +
i

ω
σ0 =: α0

and

β(r) = 1 +
i

rω

∫ r

R1

σ(t) dt = 1 +
i

rω

(∫ R2

R1

σ(t) dt+ (r −R2)σ0

)
= α0

Therefore, by this choice of constant, we have that outside of R2, the PDE solved by uB reduces to

∆uB + (α0k)2uB = 0

which is a uniform Helmholtz equation with complex wave number. Therefore, we can use these double layer
potentials with this wave number to replace the infinite condition with a near field condition.

3.3 Double Layer Potentials

In order to use these double layer potentials, we consider the external Dirichlet problem on R2 \ B2. Using
this theory, if we want to solve this problem with

w |∂B2
= f

then, since the interior Neumann problem has only the trivial solution, the solution to this problem can be
written as

w = D∂B2,R2\B2
(α0k)

(
1

2
+D∂B2

)−1

f
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3.4 Truncating the Domain 3 HELMHOLTZ FORMULATION AND PROOFS

In particular, we have that that the Berenger solution satisfies

uB |R2\B2
= D∂B2,R2\B2

(α0k)

(
1

2
+D∂B2

)−1

(uB |∂B2 .

Now, we pick some R3 > R2, and by restricting to the trace on B3, we have that

uB |∂B3= P (uB |∂B2) P = D∂B2,∂B3(
1

2
+D∂B2)−1

Lassas and Somersalo then go on to prove the following

Lemma 3.1. The restriction of uB to the set B3 \ Ω is the unique solution in H1 that satifies

(∇ ·A∇+ αβk2)u = 0

∂u

∂n
|∂Ω = g

u∂B3
= P (uB |∂B2

)

This last condition is a non-local boundary condition, which specifies that it must solve the correct
equation outside of B3.

3.4 Truncating the Domain

The rest of this proof centers around this operator P and consists of two main steps. First, they show that
if we take another operator Pε that is close enough to P , then the solutions uB and uε will be close. Finally,
they show that truncating the domain results in an operator that is close to the original P , completing the
proof.

Lemma 3.2. Assume Pε : H1/2(∂B2) → H1/2(∂B3) is an operator with the property ||Pε − P || < ε where
the norm here is the uniform operator norm on B(H1/2(∂B2), H1/2(∂B3)) of bounded linear operators. If ε
is small enough, then the previous system with P replaced by Pε has a unique solution denoted uε, and we
have that

||uB − uε||H1(B3\Ω) < Cε.

Now, we pick some ρ > R3. If we want to truncate the computation/PML domain, that is equivalent to
solving the problem

(∇ ·A∇+ αβk2)u = 0

∂u

∂n
|∂Ω = g

u∂Bρ = 0

In order to relate this to the operator P , we want to define an operator P̃ so that it maps data on ∂B2

to a corresponding set of data on ∂B3 so that the solution goes to zero on Bρ.

Lemma 3.3. Assume ũB satisfies the system above. Then

ũB |∂B3
P̃ (ũB |∂B2

)

for some specific operator P̃ . Conversely, if ũB satisfies

(∇ ·A∇+ αβk2)ũB = 0

∂ũB
∂n
|∂Ω = g

ũB |∂B3
= P̃ (ũB |∂B2

)

then ũB satisfies the above desired system.
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From this Lemma, we see that truncating the PML layer gives us a new operator P̃ that depends on ρ.
The point of this approach is that

Lemma 3.4. The operator P̃ (ρ) has the property that

lim
ρ→∞

||P̃ (ρ)− P || = 0

where the convergence is exponential and the norm is the uniform operator norm.

Finally, putting all of these lemmas together, we have the main theorem.

Theorem 3.1. Assume that the fictitious absorption coefficient σ satisfies the properties from before. Then
for any wave number k, there exists a ρ0(k) such that for all ρ > ρ0(k), the truncated Berenger system has
a unique solution ũB. Furthermore, the solution has the approximation property

lim
ρ→∞

||usc − ũB ||H1(B1\Ω) = 0

where the convergence is exponential.
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