
Solving First Order PDEs Using Characteristic Strips

Matt Charnley

February 18, 2015

Abstract

This talk will discuss a method for solving first order PDEs (in two dimensions) using Integral
Surfaces and Characteristic Strips. The general method will be presented in both the non-linear
and quasi-linear case, and several examples will be shown. This talk mostly follows chapter 1
of Fritz John.

1 Introduction

The general first order PDE in two dimensions can be written in the form

F (x, y, u, ux, uy) = 0

where F is some arbitrary function, usually with some level of smoothness. Depending on the exact
form of the equation, there can be several ways to try to solve it. For instance

aux + buy = 0

is a form of the transport equation, where u must be constant along lines of the form bx− ay = c,
since if

z(t) = u(at+ x0, bt+ y0)

then we have
z′(t) = aux + buy = 0.

If we are given initial data u(x, 0) = h(x), we then have that

u(x, y) = u(at+ x, bt+ y) = u(a
−y
b

+ x, b
−y
b

+ y) = u(x− a

b
y, 0) = h(x− a

b
y).

Similarly

xux + yuy = 0

can be solved by switching to polar coordinates, where this equation becomes

ur = 0.
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2 QUASI-LINEAR EQUATIONS

However, there is a more general method that works out for all equations of this form. This
method has more of a geometric feel, and involves the concept of integral surfaces of the PDE. The
idea is, we write z = u(x, y) and interpret this as a two-dimensional surface in R3. We call this an
integral surface of the PDE. Then, the PDE will put constraints on what the tangent plane to this
surface will look like, giving us a different approach to solving this equation.

This method can be applied to both quasi-linear and fully non-linear PDE, and I will address
both over the course of this talk. As we will see, this method reduces solving these PDEs to solving
a system of ODEs, where we have standard existence and uniqueness results.

2 Quasi-Linear Equations

2.1 Characteristic Curves

The general quasi-linear equation takes the form

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u). (1)

We call the solution z = u(x, y) the integral surface of the PDE. We can also write this in the
form

a(x, y, z)ux + b(x, y, z)uy − c(x, y, z) = 0 = 〈a(x, y, z), b(x, y, z), c(x, y, z)〉 · 〈ux, uy,−1〉.

These coefficients (a, b, c) define a vector field on (at least a part of) R3. However, what do we
know about this last vector? The tangent plane to the surface z = u(x, y) has the form

z − z0 = ux(x− x0) + uy(y − y0)

which has normal vector 〈ux, uy,−1〉. This tells us that the tangent plane to z = u(x, y) must
contain the vector 〈a, b, c〉. That is, the surface z = u(x, y) must always be tangent to the vector
〈a, b, c〉 at any point (x, y, z) that belongs to the surface.

In order to build towards this surface, we define the characteristic curves of this PDE. The idea
is that I can define curves γ in R3 that have tangent vector 〈a, b, c〉. Then, if this curve is contained
in a surface S, any point along γ clearly satisfies the orthogonality condition, because the tangent
plane to S has to contain the tangent vector to γ, which is a multiple of 〈a, b, c〉.

Definition 2.1. Given a point x0, y0, z0, a characteristic curve through P0 = (x0, y0, z0) is a curve
γ(t) = 〈x(t), y(t), z(t)〉 such that γ(0) = P0 and

x′(t) = a(x, y, z) y′(t) = b(x, y, z) z′(t) = c(x, y, z). (2)

If a, b, c are C1, then standard existence and uniqueness theory for ODEs tells us that there is
exactly one characteristic curve through any point P0.

As described before, if a surface S is a union of characteristic curves, then it is an integral
surface. We, however, also have the converse. That is, for any integral surface S, S is the union of
characteristic curves. This is a consequence of
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2.2 The Cauchy Problem 2 QUASI-LINEAR EQUATIONS

Theorem 2.1. Let P0 lie on an integral surface S, and γ be the characteristic curve through P0.
Then γ ⊂ S.

Proof. Let γ(t) = 〈x(t), y(t), z(t)〉 satisfy γ(t0) = P0. We then form the expression

U(t) = z(t)− u(x(t), y(t))

Computing, we see that

dU

dt
=

dz

dt
− ux(x, y)

dx

dt
− uy

dy

dt
= c(x, y, z)− ux(x, y)a(x, y, z)− uy(x, y)b(x, y, z)

dU

dt
= c(x, y, U(t) + u(x, y))− ux(x, y)a(x, y, U(t) + u(x, y))− uy(x, y)b(x, y, U(t) + u(x, y))

and we also have, by construction U(t0) = 0. Now, U ≡ 0 is a particular solution of the
above ODE, because u(x, y) is an integral surface. By uniqueness theory for ODEs, this is the only
solution that vanishes at t0. However, U ≡ 0 is exactly the statement that the entire characteristic
curve lies in S. �

Consequences of this:

• If two integral surfaces S1, S2 intersect at a point P , then they intersect along the entire
characteristic curve through P .

• If two integral surfaces intersect along a curve, then that curve is characteristic.

2.2 The Cauchy Problem

With this set-up, we want to look at solving the Cauchy problem for the PDE (1). This problem
is specified (for a first order equation) by giving some data along a curve in the xy-plane, i.e.
u(f(s), g(s)) = h(s) for some function h. Rewriting this, we see that there must be a curve Γ

x = f(s) y = g(s) z = h(s)

that we want to belong to our particular integral surface. Note, the “initial value problem” has the
specific form

x = s y = 0 z = h(s)

and so this is a generalization of that problem.

So, how can we build our integral surface from this curve? Assuming that Γ is not a characteristic
curve of the PDE near some point P0 = Γ(s0), we know that the integral surface must contain the
characteristic curves through each point of Γ. So, we build them. For each s near s0, I can solve
the ODEs (2) generating functions X(s, t), Y (s, t), Z(s, t) solving

∂X
∂t (s, t) = a(X(s, t), Y (s, t), Z(s, t)) X(s, 0) = f(s)
∂Y
∂t (s, t) = b(X(s, t), Y (s, t), Z(s, t)) Y (s, 0) = g(s)
∂Z
∂t (s, t) = c(X(s, t), Y (s, t), Z(s, t)) Z(s, 0) = h(s)
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2.2 The Cauchy Problem 2 QUASI-LINEAR EQUATIONS

Again, general theory on existence and uniqueness of solutions to ODEs and continuous depen-
dence on parameters gives that there exist C1 solutions X, Y , and Z for (s, t) “close enough” to
(s0, 0). Now, if we could solve these equations for x and y, namely, if we could find s = S(x, y) and
t = T (x, y), we would then have our solution in the form of

u(x, y) = Z(S(x, y), T (x, y).

The implicit function theorem gives us this result. We have that there are solutions S(x, y) and
T (x, y) to

x = X(S(x, y), T (x, y)) y = Y (S(x, y), T (x, y))

[that is,

0 = X(s, t)− x 0 = Y (s, t)− y

as maps from R2 × R2 → R2 ] satisfying S(x0, y0) = s0, T (x0, y0) if the Jacobian

J =

∣∣∣∣Xs(s0, 0) Ys(s0, 0)
Xt(s0, 0) Yt(s0, 0)

∣∣∣∣ =

∣∣∣∣ f ′(s0) g′(s0)
a(x0, y0, z0) b(x0, y0, z0)

∣∣∣∣ 6= 0.

This condition guarantees that Σ : z = u(x, y) is locally a surface. It is clearly an integral
surface because γ(t) = (X(·, t), Y (·, t), Z(·, t)) are characteristic curves, which implies that the
tangent plane to Σ must contain the vector a, b, c, and so the surface satisfies the PDE.

If this determinant is zero, then we can generate the relations

f ′b− g′a = 0 h′ = f ′ux + g′uy c = aux + buy

Rearranging these, we see that

bh′ − cg′ = 0 ah′ − cf ′ = 0

which implies that (a, b, c) is proportional to (f ′, g′, h′). Thus, the curve Γ must be characteristic at
P0. This is a problem, because if the curve is characteristic locally, then there are infinitely many
solutions near P0.

Example 2.1. (a) Simple example: Transport type equation from earlier.

aux + buy = 0

with given data u(x, 0) = h(x).

We then have the characteristic equations


∂X
∂t (s, t) = a X(s, 0) = s
∂Y
∂t (s, t) = b Y (s, 0) = 0
∂Z
∂t (s, t) = 0 Z(s, 0) = h(s)

which leads to the solutions
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3 NON-LINEAR EQUATIONS

X(s, t) = at+ s Y (s, t) = bt Z(s, t) = h(s)

Solving out for t and s, we have that

t = y/b s = x− at = x− a

b
y

so we have the solution
u(x, y) = Z(s, t) = h(x− a

b
y)

which is the same solution we got earlier.

(b) Non-linear equation
uy − xuux = 0

with given data u(x, 0) = x.


∂X
∂t (s, t) = −xz X(s, 0) = s
∂Y
∂t (s, t) = 1 Y (s, 0) = 0
∂Z
∂t (s, t) = 0 Z(s, 0) = s

which leads to the solutions

X(s, t) = sezt Y (s, t) = t Z(s, t) = s

giving the implicit solution
x = ueuy

3 Non-Linear Equations

3.1 Monge Cones and Characteristic Curves

From here on out, we use the notation z = u(x, y), p = ux, and q = uy. The most general first
order equation has the form

F (x, y, z, p, q) = 0

The idea here is the same as before, but the dependence on p and q is no longer linear, so we
don’t have as simple of relations between them. Instead of the characteristic curves from before,
we need something called characteristic strips in order to represent the geometry here.

Any integral surface through P0 = (x0, y0, z0) must have tangent plane

z − z0 = p(x− x0) + q(y − y0)

for which F (x0, y0, z0, p, q) = 0. In the same way as before, this relation restricts the possible
tangent planes that z = u(x, y) can have. Before, we had that 〈a, b, c〉 ⊥ 〈p, q,−1〉, but now, we
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3.1 Monge Cones and Characteristic Curves 3 NON-LINEAR EQUATIONS

have a 1-parameter family of tangent planes that the integral surface can have at the point P0. In
general, such a one-parameter family can be expected to envelope a cone with vertex at P0, which
is called the Monge Cone at P0. Each possible tangent plane touches the Monge Cone along an
edge. Thus, the original PDE defines a field of cones, where every integral surface must be tangent
to the field of cones at each point.

Example 3.1. (a) The Eikonal equation: |∇u|2 = 0, or, in this formulation, p2 + q2 = 1.

In this case, we have an easy way to represent the 1-parameter family here, setting p = cos θ,
q = sin θ. Thus, at any point P0 = (x0, y0, z0), we have that the possible normal vectors to
the tangent plane are 〈cos θ, sin θ,−1〉. [Sketch a picture] Thus, we see that in this case, we
actually do get a cone with vertex at P0. If the equation was more irregular, then you would
not get a circular cone.

(b) The quasi-linear case from before (1). In this case, we have the form

ap+ bq = c

Thus, given p, we can find q via q = c−ap
b assuming b is not zero. Otherwise, we can solve for

p given q. The original relation tells us that 〈p, q,−1〉 ⊥ 〈a, b, c〉. Thus, this family of planes
is all planes that contain 〈a, b, c〉. In this case, the Monge Cone degenerates to the vector
〈a, b, c〉.

From the fact that the Monge Cone is an “envelope” of a family of surfaces, we have that the
tangent plane with normal 〈p, q,−1〉 at the point P0 satisfies

dz = p dx+ q dy 0 = dx+
dq

dp
dy

The first equation comes from the tangent plane. The second comes from the envelope concept,
but it can be seen by taking the derivative of the tangent plane equation in p, where we view p
as the parameter defining the 1-parameter family, with q defined in terms of p. However, the fact
that F (x0, y0, z0, p, q) = 0 and this holds for any p, q that satisfy the desired relation, we have that

Fp +
dq

dp
Fq = 0.

Combining these relations, we see that

dz = p dx+ q dy
dx

Fp
=
dy

Fq
.

This defines a direction field on (a subset of) R3, so long as we already know the surface. We
define the characteristic curves belonging to S as those that fit this direction field. By using a
parameter t to denote the curve, we have that,

dx

dt
= Fp

dy

dt
= Fq

dz

dt
= pFp + qFq.
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3.2 Characteristic Strips 3 NON-LINEAR EQUATIONS

In the quasi-linear case, we have that Fp = a, Fq = b, and pFp+qFq = c, giving that this reduces
to that case when the equation is quasi-linear. Thus, we are fit to call these the characteristic curves
of this equation.

As long as we know the surface, these equations are well defined. If we do not know the surface,
then this system is still underdetermined; we need two more equations. By differentiating the PDE
in x and y, we see that

Fx + uxFz + uxxFp + uxyFq = 0

Fy + uyFz + uxyFp + uyyFq = 0

Then, by the chain rule, we have that

dp

dt
= uxx

dx

dt
+ uxy

dy

dt
= uxxFp + uxyFq = −Fx − pFz

dq

dt
= uxy

dx

dt
+ uyy

dy

dt
= uxyFp + uyyFq = −Fy − qFz

This fills out a system of 5 ODEs for the functions (x, y, z, p, q). So we have a fully determined
system!

Lemma 3.1. F is an integral of the system. That is dF
dt = 0.

Proof. This is just a computation

dF

dt
= Fx

dx

dt
+ Fy

dy

dt
+ Fz

dz

dt
+ Fp

dp

dt
+ Fq

dq

dt
= FxFp + FyFq + Fz(pFp + qFq) + Fp(−Fx − qFz) + Fq(−Fy − qFz) = 0 �

We call the system of five ODEs with the statement F (x, y, z, p, q) = 0 the characteristic
equations.

3.2 Characteristic Strips

A solution to the characteristic equations is a set of five equations (x(t), y(t), z(t), p(t), q(t)). We
call any quintuple of numbers (x, y, z, p, q) a plane element, and we interpret it as a point (x, y, z)
and the tangent plane

ζ − z = p(ξ − x) + q(η − y)

Such an element is called characteristic if F (x, y, z, p, q) = 0.

A one-parameter family of elements (x(t), y(t), z(t), p(t), q(t)) is called a strip if the elements
are tangent to the curve (x(t), y(t), z(t)); that is, if the ‘strip condition’ is satisfied

dz

dt
= p

dx

dt
+ q

dy

dt
,
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3.3 Cauchy Problem 3 NON-LINEAR EQUATIONS

that is, if the tangent plane defined by 〈p, q,−1〉 is also tangent to the curve at (x.y.z). If this
family solves the characteristic equations (the five ODEs, and the relation that F (x, y, z, p, q) = 0),
then it is called a characteristic strip.

A surface z = u(x, y) can be thought of as a two parameter family of elements

(x(s, t), y(s, t), z(s, t), p(s, t), q(s, t))

where, in order for these elements to make up a surface, the ‘strip conditions’ must be satisfied in
both directions

∂z

∂t
= p

∂x

∂t
+ q

∂y

∂t

∂z

∂s
= p

∂x

∂s
+ q

∂y

∂s

To visualize these planes, if they satisfy the strip conditions, they fit together kind of like scales
on a fish. Infinitesimally small scales.

Once we define these strips, we have some similar results to the characteristic curves from
earlier:

(a) A characteristic strip is determined uniquely from any one of its elements (ODE uniqueness).

(b) Given a point, the strip consists of these characteristic curve through the point and the
tangent planes to S along that curve.

(c) If two integral surfaces touch at a point, then it touches along the characteristic curve.

3.3 Cauchy Problem

As before, we view the Cauchy Problem as specifying a curve Γ that must belong to the integral
surface. We let Γ be defined by

x = f(s) y = g(s) z = h(s).

We again proceed by passing suitable characteristic strips through Γ, and extending those to a
surface to make the solution.

Let P0 = Γ(s0) and assume that f, g, h are C1 near s0. We first need to complete Γ into a
characteristic strip by finding functions φ(s) and ψ(s) so that

h′(s) = φ(s)f ′(s) + ψ(s)g′(s) F (f, g, h, φ, ψ) = 0

Solutions to this equation may not exist, and may not be unique if they exist. In order to move
forward, we assume that we are given a p0, q0 so that

h′(s0) = p0f
′(s0) + q0g

′(s0) F (x0, y0, z0, p0, q0) = 0 ∆ = f ′(s0)Fq − g′(s0)Fp 6= 0

This ∆ is the determinant of the matrix needed to apply the inverse function theorem in order
to prove that there exist such a φ and ψ. Namely, we have the function

F̃ (s, φ, ψ) =

{
φf ′(s) + ψg′(s)− h′(s)
F (f(s), g(s), h(s), φ, ψ)
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3.3 Cauchy Problem 3 NON-LINEAR EQUATIONS

where F̃ (s0, p0, q0) = 0 and the Jacobian determinant is exactly ∆.

Therefore, we have a one-parameter family of elements (x(s), y(s), z(s), φ(s), ψ(s)), defined near
a parameter value s0. As with the characteristic curves in the quasi-linear case, we now pass a
characteristic strip through each element that reduces to the standard element for t = 0. Thus, we
solve the ODE system

∂X
∂t (s, t) = Fp(X,Y, Z, P,Q) X(s, 0) = f(s)
∂Y
∂t (s, t) = Fq(X,Y, Z, P,Q) Y (s, 0) = g(s)
∂Z
∂t (s, t) = PFp(X,Y, Z, P,Q) +QFq(X,Y, Z, P,Q) Z(s, 0) = h(s)
∂P
∂t (s, t) = −Fx(X,Y, Z, P,Q)− PFz(X,Y, Z, P,Q) P (s, 0) = φ(s)
∂Q
∂t (s, t) = −Fy(X,Y, Z, P,Q)−QFz(X,Y, Z, P,Q) Q(s, 0) = ψ(s)

for all |s−s0| and |t| sufficiently small. Since it is satisfied at (s0, 0) we have that F (X,Y, Z, P,Q) =
0. As before, the functions X(s, t), Y (s, t), Z(s, t) form a parametric representation of this surface.
If we can solve for s = S(x, y) and t = T (x, y) as before, we will have an equation (locally) for this
surface. We do this again by the implicit function theorem, which works since we have∣∣∣∣Xs(s0, 0) Ys(s0, 0)

Xt(s0, 0) Yt(s0, 0)

∣∣∣∣ =

∣∣∣∣f ′(s0) g′(s0)
Fp Fq

∣∣∣∣ = ∆ 6= 0

Thus, we have our equation in the form

u(x, y) = z = Z(S(x, y), T (x, y)).

Now, if we have an integral surface, we can write the equations in this way. It remains to show
that this parametrization gives an integral surface. This will be true if we have P = ux and Q = uy.
We can determine ux and uy as parametrized by s and t, via the chain rule, namely

Zs = uxXs + uyYs Zt = uxXt + uyYt

Thus, we will be done if we can show that

Zs = PXs +QYs Zt = PXt +QYt

which are just the strip conditions for (X,Y, Z, P,Q), that is, this determines if these elements
make up a surface. The t equation is just a consequence of the characteristic equations that
(X,Y, Z, P,Q) satisfy. For the s equation, we define a new function

A(s, t) = Zs − PXs −QYs A(s, 0) = h′(s)− φ(s)f ′(s)− ψ(s)g′(s) = 0

for all s. By using the characteristic equations, we see that

At = Zst − PtXs − PXst −QtYs −QYst

=
∂

∂s
(Zt − PXt −QYt) + PsXt − PtXs +QsYt −QtYs

= 0 + PsFp +Xs(Fx + PFz) +QsFq + Ys(Fy +QFz)

= FxXs + FyYs + FpPs + FqQs + Fz(PXs +QYs)

=
∂F

∂s
+ Fz(PXs +QYs − Zs) = −FzA
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3.3 Cauchy Problem 3 NON-LINEAR EQUATIONS

Thus, by integration, we have that

A(s, t) = A(s, 0) exp

(
−
∫
Fz

)
= 0.

Thus, we have our desired relation, and (X,Y, Z, P,Q) form an integral surface.

Example 3.2. (a) Take the PDE
u2x + u2y = u2.

We want to find the characteristic strips and two specific solutions. For the first part of this,
we are going to take arbitrary initial values (x0, y0, z0, p0, q0) and solve for the strips. This
equation can be rewritten as

F (x, y, z, p, q) = p2 + q2 − z2 = 0

We then want to solve the strip equations



∂X
∂t = Fp(X,Y, Z, P,Q) X(0) = x0
∂Y
∂t = Fq(X,Y, Z, P,Q) Y (0) = y0
∂Z
∂t = PFp(X,Y, Z, P,Q) +QFq(X,Y, Z, P,Q) Z(0) = z0
∂P
∂( t) = −Fx(X,Y, Z, P,Q)− PFz(X,Y, Z, P,Q) P (0) = p0
∂Q
∂t = −Fy(X,Y, Z, P,Q)−QFz(X,Y, Z, P,Q) Q(0) = q0

Plugging in the derivatives of the function F , we see that we are trying to solve



∂X
∂t = 2P X(0) = x0
∂Y
∂t = 2Q Y (0) = y0
∂Z
∂t = 2P 2 + 2Q2 = 2Z2 Z(0) = z0
∂P
∂( t) = 2PZ P (0) = p0
∂Q
∂t = 2QZ Q(0) = q0

The Z equation is decoupled, so we can solve it first, to get

dZ

Z2
= 2dt ⇒ − 1

Z
= 2t+ C = 2t− 1

z0
⇒ Z(t) =

z0
1− 2tz0

.

Now that we have Z, we can solve the P and Q equations, which are identical

dP

P
= 2Z dt =

2z0 dt

1− 2tz0
= −du

u
u = 1− 2tz0

Thus, we have

ln(P ) = − ln(u) + C P =
C

u
=

C

1− 2tz0
⇒ P (t) =

p0
1− 2tz0

.
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3.3 Cauchy Problem 3 NON-LINEAR EQUATIONS

And finally, the X and Y equations can be solved.

dX =
2p0

1− 2tz0
dt = −p0

z0

du

u
⇒ Z(t) = −p0

z0
ln(1− 2tz0) + x0

Thus, we have the system of equations



X(t) = −p0
z0

ln(1− 2tz0) + x0

Y (t) = − q0
z0

ln(1− 2tz0) + y0

Z(t) = z0
1−2tz0

P (t) = p0
1−2tz0

Q(t) = q0
1−2tz0

Now, we want to look at two Cauchy Problems. First we want to solve with the curve

Γ : x = cos(s) y = sin(s) z = 1.

We need to find values for φ(s) and ψ(s) in order to solve the equations. By the equation we
have that

φ(s)2 + ψ(s)2 = 1

Using the strip condition in s, we have that

φ(s)(− sin(s)) + ψ(s)(cos(s)) = 0

We therefore have solutions of the form φ(s) = cos(s) and ψ(s) = sin(s) or both terms can
be negative. Then, we have

X(s, t) =
∓ cos(s)

1
ln(1−2t)+cos(s) = (1∓ln(1−2t)) cos(s) Y (s, t) = (1∓ln(1−2t)) sin(s))

We then have
X2 + Y 2 = (1∓ ln(1− 2t))2

and

Z(s, t) =
1

1− 2t
⇒ ln(Z(s, t)) = − ln(1− 2t)

Putting these together, we have that

X2 + Y 2 = (1± ln(Z))2 ⇒ Z = exp
(
∓(1−

√
X2 + Y 2

)
For the second problem, we want to use the curve
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3.3 Cauchy Problem 3 NON-LINEAR EQUATIONS

Γ : x = s y = 0 z = 1

Solving for φ and ψ yields the two equations{
φ2 + ψ2 = 1

φ = 0

giving that φ = 0, ψ = ±1. Thus, the characteristic equations reduce to



X(s, t) = 0 + s

Y (s, t) = −±11 ln(1− 2t)

Z(s, t) = 1
1−2t

P (s, t) = 0

Q(s, t) = ±1
1−2t

Thus, we have ln(Z) = ±Y . Thus we have Z = exp(±Y ).
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