Complex Numbers

Learning (zoals

e Add, subtract, multiply, and divide complex numbers
e Find the absolute value of a complex number

e Convert complex numbers to and from polar form

e Find the product and quotient of complex numbers in polar form

e Use complex numbers to help solve partial fraction problems

e Use complex numbers to discuss the radius of convergence of power series

Contents

11

Algebra of Complex Numbers|

Complex Conjugate and Division|

Geometry of Complex Numbers|

Exponential Form and Euler’s Formula

Applications to Partial Fractions|

Applications to Power Series|

11

14

18

21



1 Algebra of Complex Numbers

Why Complex Numbers?

We know that the polynomial 22 + 1 has no real roots. But what if it had

roots? Yl.'., - O

1. -
x> "l




Definition. A complex number z is defined as
z=x4+ 1y L = ‘-‘

for x and y real numbers. For this number x is the real part of z and y is

the imaginary part of z.
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Operations on Complex Numbers
All of the operations we can do on real numbers we can also do with complex

numbers. The idea is that we treat ¢ like a variable and group terms so it
matches the form of a complex number.
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Example: Compute the following:

Lers-c-u 4. (2 -S) +

<’S. f‘/o)

2. 3(2+1) + 4(4 — i)
3. (2+1)(3 — 2i) L’ -3 + 1‘
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2 Complex Conjugate and Division

The last operation on real numbers that we want to extend to complex num-
bers is division. How do we think about division of real numbers?



For this, we need another definition:

Definition. The complex conjugate of z = x 4 7y is the complex number
zZ = x —iy. The modulus of a complex number z = z+iy is |z| = /22 + y2.




Properties of Complex Conjugates

(a)z = 2




Reciprocal of Complex Numbers

Z
If we look at the product z - W’ what do we get?
z

2-z =L =

\




Example: Find

—1

z_

= (21*
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21+ 3i =(Z" 3‘) .
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3 Geometry of Complex Numbers

How can we visualize complex numbers? The notation z = xz+1y is suggestive
here, in that we can use the x and y coordinates in the plane to plot and

view complex numbers.
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We can also use polar coordinates to view these numbers.
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Example: Plot the complex number 2 — ¢ in the complex plane as well as

the polar coordinates of this number.




4 Exponential Form and Euler’s Formula

When we write a complex number in polar form, we see that it can be written
as J
z =|z|cosf + i|z|sinf = |z|(cosf 4 isin )

Is there a nicer way to view this?
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Definition. The polar form of a complex number z is |z|e®.
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Product and Quotient in Polar Form

It is really easy to add and subtract complex numbers in rectangular form
x+1y, and slightly more complicated to multiply and divide in this form. For
polar form or exponential form, however, multiplying and dividing is really
easy.
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Example: Convert to exponential form and then find the quotient -2 \%Z
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5 Applications to Partial Fractions

We want to see how complex numbers can be used to help with some Cal-
culus topics. The first concept is partial fractions. What was the issue with
handling irreducible polynomials before?
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Example: Use complex numbers to help compute /
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6 Applications to Power Series

Complex numbers are also useful for interpreting power series and the radius
of convergence.
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Conclusion:

If there is a place where the function doesn’t exist in the complex plane,
that gives me a point where the series can’t converge, and so an upper bound
on the radius.
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Example: Show that the function f(x) = 75 is undefined at the four
complex numbers given by £2 + 2i. Use this fact to show that the radius
of convergence of the power series for f(x) centered at zero is no more than
21/2. Find the actual power series and validate this.
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Example: Use complex numbers to find an upper bound for the radius of

convergence of the power series expansion of ﬁ centered at x = —1.
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