Complex Numbers

Learning Goals

- Add, subtract, multiply, and divide complex numbers
- Find the absolute value of a complex number
- Convert complex numbers to and from polar form
- Find the product and quotient of complex numbers in polar form
- Use complex numbers to help solve partial fraction problems
- Use complex numbers to discuss the radius of convergence of power series

Contents

1 Algebra of Complex Numbers 2

2 Complex Conjugate and Division 6

3 Geometry of Complex Numbers 11

4 Exponential Form and Euler's Formula 14

5 Applications to Partial Fractions 18

6 Applications to Power Series 21

1 Algebra of Complex Numbers
Why Complex Numbers?
We know that the polynomial $x^{2}+1$ has no real roots. But what if it had roots?

$$
\begin{aligned}
& x^{2}+1=0 \\
& x^{2}=-1 \text { or } x= \pm \sqrt{-1}
\end{aligned}
$$

Define the imaginary unit i as $\sqrt{-1}$
The solutions to $x^{2}+1=0$ ore $\pm i$

$$
\sqrt{-16}=\sqrt{-1} \cdot \sqrt{16}=4 i
$$

- Soling Quadratic equations using this i.

Definition. A complex number x is defined as

$$
z=x+i y \quad 6=1-1
$$

for x and y real numbers. For this number x is the real part of z and y is the imaginary part of z.

$z=1+3 i$ $\operatorname{Re}(z)=1$
$\operatorname{Im}(z)=3$ $R_{R}(4)=\sqrt{2}$ $\operatorname{Im}(\omega)=-1 / 3$

Operations on Complex Numbers
All of the operations we can do on real numbers we can also do with complex numbers. The idea is that we treat i like a variable and group terms so it matches the form of a complex number.

$$
\begin{aligned}
&(a+b i)(x+y i)=(a+x)+\left(b x_{y}\right) i \\
& a+b i+x+y i
\end{aligned} \begin{aligned}
(a+b i)-(x+y i) & =(a-x)+(b-y) i \\
(a+b i)(x+y i) & =a x+x b i+a y i+b i y i \\
& =a x+x b i+a y i+b y i^{2} \\
& =a x-b y+(x b+a y) i
\end{aligned}
$$

$$
\begin{aligned}
& \text { Example: Compute the following: } \\
& \begin{array}{l}
\text { 1. }(2+3 i)-(5-4 i) \\
\text { 2. } 3(2+i)+4(4-i) \\
\text { 3. }(2+i)(3-2 i)
\end{array} \quad(\mathbf{2}-5)+(3 i+4 i)
\end{aligned}
$$

2.

$$
\begin{aligned}
& (6+3 i)+(16-4 i) \\
& (6+16)+(3-4) i=22-i
\end{aligned}
$$

3.

$$
\begin{aligned}
& 6+3 i-4 i-2 i_{k-1}^{2} \\
& 6+3 i-4 i+2 \\
& 8-i
\end{aligned}
$$

2 Complex Conjugate and Division

The last operation on real numbers that we want to extend to complex nom bers is division. How do we think about division of real numbers?

$$
\frac{a}{b}=a \cdot \frac{1}{b}
$$

Complex Numbers: What is $\frac{1}{z}$?
\rightarrow Division is multiplying by $1 / z$.

$$
1+i \rightarrow \frac{1}{1+i} \leadsto x+i y
$$

Once it is in that form were good.

For this, we need another definition:
Definition. The complex conjugate of $z=x+i y$ is the complex number
$\bar{z}=x-i y$. The modulus of a complex number $z=x+i y$ is $|z|=\sqrt{x^{2}+y^{2}}$.

$$
\begin{aligned}
& \bar{z}=x-i y \\
& \operatorname{Re}(z)=\operatorname{Re}(\bar{z}) \\
& \operatorname{Im}(z)=-\operatorname{Im}(\bar{z})
\end{aligned}
$$

If $z=x$ is a real number, then

$$
|z|=\sqrt{x^{2}+o^{2}}=\sqrt{x^{2}}=|x|
$$

Absolute value
Modiolus

$$
z=3+i \quad \bar{z}=3-i
$$

Properties of Complex Conjugates

$$
\begin{aligned}
& \\
&=\overline{z_{1}}+\overline{\boldsymbol{z}_{2}} \\
&{ }^{(\mathrm{B}) \overline{z_{1}}+\overline{z_{2}}}=\overline{\boldsymbol{z}_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& (x+i y)(x-i y) \\
= & x^{2}+i y x-x i y-i^{2} y^{2} \\
= & x^{2}+y^{2}=|z|^{2}
\end{aligned}
$$

Real Number

- Con divide by this ad get a real number.

Reciprocal of Complex Numbers
If we look at the product $z \cdot \frac{\left.\frac{z}{|z|} \right\rvert\, \text {, what do we get? }}{}$

$$
\begin{gathered}
=\frac{z \cdot \bar{z}}{|z|^{2}}=\frac{|z|^{2}}{|z|^{2}}=1 \\
\frac{\bar{z}}{|z|^{2}}=\frac{1}{z} \text { Net in xtiy form }
\end{gathered}
$$

So we con use this with multiplication to find the quotients we need.

$$
\begin{aligned}
& \text { Example: Find } \frac{2+3 i}{1-i}=(2+3 i) \cdot \frac{1}{1-i} \\
& \begin{array}{l}
\frac{1}{1-i}=\frac{\bar{z}}{|z|^{2}} \quad \begin{array}{l}
\bar{z}=1-i \\
\frac{1}{1-i}
\end{array} \quad \frac{|z|^{2}=1+(-1)^{2}=2}{2}=\frac{1+i}{2}+\frac{1}{2} i \\
\frac{2+3 i}{1-i}=(2+3 i)\left(\frac{1}{2}+\frac{1}{2} i\right)=1+\frac{3}{2} i+i+\frac{3}{2} i^{2} \\
=-\frac{1}{2}+\frac{5}{2} i
\end{array}
\end{aligned}
$$

3 Geometry of Complex Numbers

How can we visualize complex numbers? The notation $z=x+i y$ is suggestive here, in that we can use the x and y coordinates in the plane to plot and view complex numbers.

We can also use polar coordinates to view these numbers.

Example: Plot the complex number $2-i$ in the complex plane as well as the polar coordinates of this number.

$$
\begin{aligned}
& |z|=\sqrt{2^{2}+(-1)^{2}}=\sqrt{5}=r \\
& \theta=\operatorname{tar}^{-1}\left(\frac{-1}{2}\right)=\tan ^{-1}\left(\frac{-1}{2}\right) \\
& \sqrt{5}(\cos (\theta)+i \sin (\theta))
\end{aligned}
$$

4 Exponential Form and Euler's Formula

When we write a complex number in polar form, we see that it can be written as

$$
z=|z| \cos \theta+i|z| \sin \theta=|z|(\cos \theta+i \sin \theta)
$$

Is there a nicer way to view this?

$$
\cos \theta=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} \theta^{2 n} \quad \sin \theta=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{1}} \theta^{2 n+1}
$$

∞
All even terms

$$
\cos \theta+i \sin \theta=\sum_{n=0}^{\infty} \frac{1}{n!}(i \theta)^{n}
$$

Maclaurin Series for e^{x}

$$
\cos \theta+i \sin \theta=e^{i \theta}
$$

Euler's Formula

Definition. The polar form of a complex number z is $|z| e^{i \theta}$

$$
\underbrace{|z|}(\cos \theta+i \sin \theta)
$$

- Leading coefficient most be positive.

$$
\begin{aligned}
& -1=-1+0 i \quad \frac{\text { poler }}{\pi} \\
& (-1,0) \rightarrow(1, \pi) \\
& -1=1 e^{i \pi} \rightarrow e^{i \pi}+1=0
\end{aligned}
$$

Product and Quotient in Polar Form
It is really easy to add and subtract complex numbers in rectangular form $x+i y$, and slightly more complicated to multiply and divide in this form. For
polar form or exponential form, however, multiplying and dividing is really
easy.

- All exponential Rules apply to complex Numbers.

$$
\begin{aligned}
e^{i \theta} \cdot e^{i \varphi} & =\underline{e^{i(\theta+\varphi)}} \\
2 e^{i \pi / 4} \cdot 3 e^{-i \pi / 6} & =6 e^{i(\pi / 4-\pi / 6)} \\
& =6 e^{i \pi / 2}
\end{aligned}
$$

Example: Convert to exponential form and then find the quotient $\frac{3-3 i}{1+\sqrt{3} i}$.
Polar Form

$$
\left.\begin{array}{lr}
\text { Polar Form } & |z|=\sqrt{9+9}=3 \sqrt{2} \\
3-3 i & \theta=\tan ^{-1}\left(\frac{-3}{3}\right)=-\pi / 4
\end{array}\right\}=2 .
$$

5 Applications to Partial Fractions
We want to see how complex numbers can be used to help with some Cal culls topics. The first concept is partial fractions. What was the issue with handling irreducible polynomials before?

We have no way to make them zero in value substitution.
\rightarrow Need to solve bigger systems of equations.

- But! These polynomials have complex roots! - plugin this number and solve out from there.

Method:

1. Find partial Fraction decomp. like normal, including irreducible quadratic like before.
\rightarrow Do not use complex numbers to factor irred vale quadratics.
2. Set up for valve substitution.
3. 名解 in numbers
\rightarrow Linear factors like before
\rightarrow Pliny in one complex root for each quadratic Factor.
4. Solve for con stents Repeated factors still an issue.
s. Integrate.

Example: Use complex numbers to help compute $\int \frac{12 x}{(x+1)\left(x^{2}+2 x+5\right)} d x$

$$
x=\frac{-2 \pm \sqrt{4-20}}{2}=\frac{-2 \pm \sqrt{-10}}{2}=-1 \pm 2 i
$$

Partial Fractions

$$
\begin{aligned}
& \frac{\text { Partial Fractions }}{\frac{12 x}{(x+1)\left(x^{2}+2 x+5\right)}}=\frac{A}{x+1}+\frac{B x+C}{x^{2}+2 x+5} \\
& 12 x=A\left(x^{2}+2 x+5\right)+(B x+C)(x+1) \\
&-12=A(1-2+5)+0 \\
&-12=4 A \\
& x=-1 \quad A=-3
\end{aligned} \quad \begin{aligned}
x=-1+2 i \quad 12(-1+2 i) & =A(0)+(B(-1+7 i)+C)(2 i) \\
-12+24 i & =2 i(-B+2 B i+C) \\
& =-2 i B+4 B i^{2}+2 i C
\end{aligned}
$$

$$
\begin{aligned}
& \underbrace{-12}+24 i=-4 B+i(2 C-2 B) \\
& -12=-48 \\
& B=3 \\
& 24=2 C-2 B \\
& c=15 \\
& 30=\alpha c \\
& \int \frac{12 x}{(x+1)\left(x^{2}+2 x+5\right)} d x=\int \frac{-3}{x+1}+\frac{3 x+15}{x^{2}+2 x+5} d x \\
& =-3 \int \frac{1}{x+1} d x+3 \int \frac{x+1}{x^{2}+2 x+5} d x \\
& +12 \int \frac{1}{x^{4}+2 x+5} d x \\
& =-3 \ln |x+1|+\frac{3}{2} \ln \left|x^{2}+2 x+5\right| \\
& +\frac{12}{2} \tan _{6}^{-1}\left(\frac{x+1}{2}\right)+C
\end{aligned}
$$

6 Applications to Power Series

Complex numbers are also useful for interpreting power series and the radius of convergence.
 $n=0$

- plugin complex
numbers instead of just real numbers.

$$
\rho=\lim _{n \rightarrow \infty} \frac{\left|a_{n+1} x^{n+1}\right|}{\left|a_{n} x^{n}\right|}
$$

$\frac{1}{1-x}=\sum_{1}^{\infty} x^{n} \quad$ converges for
$\sum_{n=0}$

$$
1+1<1
$$

- Radios $=1$
- Radius of convergence.
$f(x)=\frac{1}{1+x^{2}} \quad$ Radius of convergence is 1 .
\rightarrow Defined for all real numbers x.
- But there ore complex numbers where it is not de fired. $f(\pm i)$ nat defined.

If there is a place where the function doesn't exist in the complex plane that gives me a point where the series can't converge, and so an upper bound on the radius.

Look for points in the complex plane where the function is not defined
\rightarrow Includes real values.

- Expand out from the center until you hit one of those porn's
\rightarrow Radios of Convergence.

Example: Show that the function $f(x)=\frac{\lambda}{x^{4}+64}$ is undefined at the four complex numbers given by $\pm 2 \pm 2 i$. Use this fact to show that the radius of convergence of the power series for $f(x)$ centered at zero is no more than $2 \sqrt{2}$. Find the actual power series and validate this.

$$
\begin{aligned}
& (2 \pm 2 i)^{2}=4 \pm 8 i+4 i^{2}= \pm 8 i \\
& (-2 \pm 2 i)^{2}=4 \mp 8 i+4 i^{2}= \pm 8 i
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x}{x^{4}+64}=\frac{x}{64}\left(\frac{1}{1+\frac{x^{4}}{64}}\right)=\frac{x}{64} \sum_{n=0}^{\infty}\left(\frac{-x^{4}}{64}\right)^{n} \\
& \frac{1}{64} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{64^{n}} \cdot x^{4_{n+1}} \\
& \rho=\lim _{n \rightarrow \infty} \frac{\frac{1}{64^{m+1}}|x|^{n_{n}+3}}{\frac{1}{64^{n}}|x|^{y_{n+1}}} \\
& |x|^{4}<64 \quad|x|<2 \sqrt{2}
\end{aligned}
$$

Example: Use complex numbers to help find $\int \underbrace{\frac{13}{(x-2)^{2}\left(x^{2}+9\right)}}_{\text {repeated }} d x$
factor Irreducible Quadratic.

$$
\begin{aligned}
& \frac{B}{(x-2)^{2}\left(x^{2}+9\right)}=\frac{A}{x-2}+\frac{B}{(x-2)^{2}}+\frac{(x+D}{x^{2}+9} \\
& B=A(x-2)\left(x^{2}+9\right)+B\left(x^{2}+9\right) \\
& +\left((x+D)(x-2)^{2}\right.
\end{aligned}
$$

$x=2$

$$
B=0+B(4+9)+0
$$

$$
x=3 i
$$

$$
\begin{aligned}
13 & =0 \times O(C 3 i+D)(3 i-2)^{2} \\
B & =(3 i C+D)(3 i-2)(3 i-2) \\
& =(3 i C+D)\left(9 i^{2}-6 i-6 i+4\right)
\end{aligned}
$$

$$
\begin{aligned}
13 & =(3 i c+D)(-5-12 i) \\
& =-15 i C-5 D-36 i^{2} C-12 i D \\
& =\underbrace{(36 C-5 D)}+\underbrace{(-12 D-15 C) i} \\
13 & =36 C-5 D \\
0 & \left.=-12 D-15 C \rightarrow-\frac{5}{4} C\right) \\
13 & =36 C-5\left(\frac{-5}{4} C\right) \\
13 & =36 C+\frac{25}{4} C=\frac{144+25}{4} c \\
C & =\frac{169}{4} c \\
13 & =A(x-2)\left(x^{2}+9\right)+1\left(x^{2}+9\right)+\left(\frac{4}{13} x-\frac{5}{13}\right)(x-2)^{2}
\end{aligned}
$$

$x=0$

$$
\begin{aligned}
13 & =A(-2)(9)+7(9)+\frac{-5}{13} 4 \\
B & =-18 A+9-\frac{20}{13} \\
A & =\frac{1}{18}(\underbrace{9-13}_{-4}-\frac{20}{13})=\frac{1}{18}\left(-\frac{52}{13}-\frac{20}{13}\right) \\
& =\frac{1}{18}\left(\frac{72}{13}\right)=4 / 13
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{13}{(x-2)^{2}\left(x^{2}+9\right)} d x=\int \begin{array}{r}
\frac{4 / 13}{x-2}+\frac{1}{(x-2)^{2}} \\
+\frac{4 / 13 x}{x^{2}+9}+\frac{-5 / 13}{x^{2}+9} d x
\end{array} \\
&=\frac{4}{13} \ln |x-2|-\frac{1}{x-2}+\frac{2}{13} \ln \left|x^{2}+9\right| \\
&-\frac{5}{39} \tan ^{-1}\left(\frac{x}{3}\right)+C
\end{aligned}
$$

Example: Use complex numbers to find an upper bound for the radius of convergence of the power series expansion of $\frac{1}{\left(x^{2}-5\right)^{2}}$ centered at $x=-1$.

- If the function does nat exist at a point the power series cant converge there.
where is the denominator 0 ?

$$
\begin{aligned}
& x=\frac{4 \pm \sqrt{16-20}}{2}=\frac{4 \pm \sqrt{-4}}{2} \\
& \\
& =\frac{\frac{4 \pm 2 i}{2}}{x^{2}-4 x+5=0} \\
& =2 \pm i \\
& R=
\end{aligned}
$$

