Numerical Integration

Learning Goals

- Approximate a definite integral using either the midpoint rule, the trapezodial rule or Simpson's rule for a given N
- Compare approximation of a definite integral using either the midpoint rule, the trapezodial rule or Simpson's rule for a given N to the accurate value
- Determine error bounds for either the midpoint rule, the trapezoidal rule or the Simpson's rule
- Determine N for which the error bound for an approximation of a given integral by either the midpoint rule, the trapezoidal rule or the Simpson's rule is given
- Find the constants in an error bound for either the midpoint rule, the trapezoidal rule or the Simpson's rule

Contents

3 Simpson's Rule 9
4 Error Bounds 12

1 Why numerical integration?
Numerical integration is important for several reasons:

1. Only an approximation to the value of an integral is needed.
2. We can't integrate a function by hand

$$
\int e^{-x^{2}} d x \rightarrow \cdot N_{0} \text { "close d-form" expression } N_{0} \text { function for antiderivatin }
$$

$$
\int \sin \left(x^{2}\right) d x \rightarrow \text { Same }
$$

$$
\begin{aligned}
& \int \sin \left(x^{2}\right) d n \\
& f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \rightarrow \text { Bell Curve } \\
& \text { Normal distribution }
\end{aligned}
$$

\rightarrow Integrals of this f give us the ability to do statistics.

What is the idea?
We have already thought about integrals as limits of Riemann sums.

- If I take 'enough' rectangles, then the area under the rectangles should be "close" to the area under the curve.
- Also expand beyond rectangles (trapezoids and para bolas) to get different approximations

2 Midpoint and Trapezoid Rule

These are our first two rules for numerical integration. They give us formulas for finding the approximate area, given the function an interval we want to integrate over.

Midpoint Rule

(A) M_{N} is the sum of the areas of the midpoint rectangles.

(B) M_{N} is also the sum of the areas of the tangential trapezoids.

Rogawski et al., Calculus: Early Transcendentals, 4e, © 2019 W. H. Freeman and Company

$$
\begin{aligned}
& \text { - Take midpoint of eoch interval, and } \\
& \text { the function at that point is the } \\
& \text { height. } \\
& M_{N}=\text { approx rmation to areo using } N \\
& \text { rectongles, Midpoint gives height. }
\end{aligned}
$$

Formula
Interval $[a, b] \quad$ Approximate Function $f(x)$.

$$
\begin{aligned}
& \text { Approximate } \\
& \int_{a}^{b} f(x) d x \approx M_{N}
\end{aligned}
$$

$$
\Delta x=\frac{b-a}{N}
$$

$$
\begin{aligned}
& M_{N}=\Delta x f\left(c_{1}\right)+\Delta x\left(f\left(c_{2}\right)\right)+\cdots+\Delta \times f\left(c_{N}\right) \\
& M_{N}=\Delta x\left(f\left(c_{1}\right)+f\left(c_{2}\right)+\cdots+f\left(c_{n}\right)\right) \\
& \text { Where } \quad \Delta x=\frac{b-a}{N} \quad\left(i=a+\left(i-\frac{1}{2}\right) \Delta^{x}\right.
\end{aligned}
$$

Trapezoid Rule

Rogawski et al., Calculus: Early Transcendentals, 4e, © 2019 W. H. Freeman and Company

- Connect the two points at each end to make a trapezoid instead of picking the midpoint for a rectangle.
\rightarrow Doit need to find midpoints
\rightarrow Formula is slightly more complicated

Formula

$$
\begin{array}{rlrl}
b_{2} b_{h} & A & =h\left(\frac{b_{1}+b_{2}}{2}\right) \\
& & =\frac{h}{2}\left(b_{1}+b_{2}\right)
\end{array}
$$

$$
\begin{aligned}
& h=\Delta x \\
& b_{1}=f(\text { left end }) \\
& b_{2}=f(r i g h t \text { end })
\end{aligned}
$$

Take N slices

$$
\forall f\left(m_{2}\right)
$$

$$
\begin{gathered}
\left.+f\left(x_{N}\right)\right) \\
T_{N}=\frac{\Delta x}{2}\left(y_{0}+2 y_{1}+2 y_{2}+\cdots+2 y_{N-1}+y_{N}\right) \\
\Delta x=\frac{b-a}{N}
\end{gathered}
$$

$$
\int_{0}^{4} x d x=\left.\frac{x^{3}}{3}\right|_{0} ^{4}=64 / 3
$$

$$
\begin{aligned}
M_{4} & =\Delta x[f(0.5)+f(1.5)+f(2.5)+f(3.5)] \\
& =1[1 / 4+9 / 4+25 / 4+4 / 4] \\
& =84 / 4=21] \\
T_{4} & =\frac{\Delta x}{2}\left[y_{0}+2 y_{1}+2 y_{2}+2 y_{3}+y_{4}\right] \\
& =\frac{1}{2}[0+2+8+18+16] \\
& =44 / 2=22
\end{aligned}
$$

3 Simpson's Rule

What if I want to do better than straight lines between the points? This thought leads to Simpson's Rule

- Trapezoid Rule: Draw line between the end joints and use that to approximate the function.
- Simpson's Rule: Take three points and draw the parabola through them.
\rightarrow Tile this fo give the area under the function.

$$
\text { Area }=\frac{\Delta x}{3}\left(y_{0}+4 y_{y}, y_{2}\right)
$$

$$
A x^{2}+B x+C \quad A r a=\frac{\Delta r}{3}(\ell+4 m+r)
$$

Assume N is even

$$
\begin{aligned}
& \text { Assume } N \text { is even } \\
& \begin{array}{r}
S_{N}=\frac{\Delta x}{3}\left(y_{0}+4 y_{1}+y_{2}\right)+\frac{\Delta x}{3}\left(y_{2}+4 y_{3}+y_{4}\right) \\
\\
+\frac{\Delta x}{3}\left(y_{4}+4 y_{5}+y_{6}\right)+\cdots \\
\\
+\frac{\Delta r}{3}\left(y_{N-2}+4 y_{N-1}+y_{N}\right) \\
S_{N}=\frac{\Delta x}{3}\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+2 y_{4}+\cdots+2 y_{N-2}+4 y_{N-1}\right. \\
\left.+y_{N}\right)
\end{array} \\
& \Delta x=\frac{b-a}{N}
\end{aligned}
$$

Example: Compute S_{6} for the function $y=x^{2}$ on $[0,6]$.

$$
\Delta x=1
$$

$$
\begin{aligned}
S_{6} & =\frac{\Delta x}{3}\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+2 y_{4}+4 y_{5}+y_{6}\right) \\
& =\frac{1}{3}(0+4+8+36+32+100+36)
\end{aligned}
$$

$$
=\frac{216}{3}=72
$$

\rightarrow Exactly correct!

4 Error Bounds

When doing numerical integration, it's important to know how accurate your approximations are. This is useful in applied settings, when you need to be accurate within a specific amount for calculations to work.

What is an Error Bound?
A way of calculating the
11 Case scenario"
cull ing how for off
my approximate answer is from the actual answer.

$$
\text { If Err } \leq .001
$$

Error Bound Formulas
Midpoint + Trapezoid
Assume $f^{\prime \prime}$ erists on $[a, b]$, and K_{2} is a number so that $K_{2}>\left|f^{n}(x)\right|$ on (a, b).
Then

$$
\begin{aligned}
& \operatorname{error}\left(M_{N}\right) \leq \frac{k_{2}(b-a)^{3}}{24 N^{2}} \\
& \operatorname{errar}\left(T_{N}\right) \leq \frac{k_{2}(b-a)^{3}}{12 N^{2}}
\end{aligned}
$$

Simporis Assume that $f^{(4)}(x)$ exits and $K_{4}>\left|f^{(4)}(x)\right|$ an $[0, b]$ Then

$$
\operatorname{error}\left(S_{N}\right) \leq \frac{K_{4}(b-a)^{5}}{180 N^{4}}
$$

Example: I want to use numerical integration to compute $\int_{0}^{2} \sqrt{1+x^{2}} d x$.
How many terms would I need to guarantee that my approximation was
$\begin{array}{lll}k_{2} & k_{4} & (b-a)=2-0=2\end{array}$

$$
\begin{gathered}
f(x)=\sqrt{1+x^{2}} \\
f^{\prime \prime}(x)=\frac{1}{\left(1+x^{2}\right)^{3 / 2}} \quad\left|f^{\prime \prime}(x)\right| \leq 1 \quad k_{2}=1 \\
\left.f^{(4)}(x)=\frac{3\left(4 x^{2}-1\right)}{\left(1+x^{2}\right)^{3 / 2}}\left|f^{(4)}\right|(x) \right\rvert\, s 3 \quad k_{4}=3 \\
\operatorname{errar}\left(\mu_{N}\right)=\frac{k_{2}(b-4)^{3}}{24 N^{2}}=.01 \\
N^{2}=\frac{100(8)}{24}=\frac{100}{3} \\
N=5.77
\end{gathered}
$$

Midpoint: 6 rectangles.

$$
\begin{aligned}
\operatorname{error}\left(T_{N}\right)=\frac{k_{2}(b-a)^{3}}{12 N^{2}} & =\cdot 01 \\
N^{2} & =\frac{200}{3} \\
N & \approx 8.165
\end{aligned}
$$

Trapezoids: 9 trapezords

$$
\begin{aligned}
& \operatorname{error}\left(S_{N}\right)=\frac{K_{4}(b-a)^{5}}{180 N^{4}}=.01 \\
& \Rightarrow \frac{3(32)}{180 N^{4}}=.01 \\
& N^{4}=\frac{100.96}{180}=\frac{160}{3} \\
& N^{2} 7.30
\end{aligned}
$$

Sinpsons: 8 ponts (4 pocablos)

