Improper Integrals

Learning Goals

- Identify an integral as an improper integral
- Determine if an improper integral is convergent or divergent by evaluating
- Determine if an improper integral is convergent or divergent using pintegrals
- Determine if an improper integral is convergent or divergent using the comparison test

Contents

1 Definition 2
2 Infinite Intervals 4
3 Unbounded Integrands 6
4 The p-integral and the Comparison Test 8
5 Multiple Issues 11

1 Definition

All of the integrals we have dealt with so far represented signed areas/volumes of bounded regions, whether that be area under a single curve, area between two curves, or volumes of revolution. What about unbounded regions? Can we talk about their areas and volumes in the same way? This gives rise to the study of improper integrals.

Two types of improper integrals

- Bounds of Integration gong to infinity

What happens as the cutoff paint gave to s?

- Function itself goes to infinity

$$
\int_{1}^{3}+x \mid x d x
$$

What happens when the cutoff point goes to the asymptote?

Make up a cutoff point and then limit it to the problematic point. (Do or asymptote of function)

If this limit exists, we say the improper integral converges. If not, then the improper integral diverges.

2 Infinite Intervals
How do we analyze $\int_{a}^{\infty} f(x) d x ?$

- Evaluate $\int_{a}^{R} f(x) d x$
- Look at $\lim _{R \rightarrow \infty} \int_{a}^{R} f(x) d x$
\rightarrow If exists, then converges
\rightarrow If dues not exist then dings (incudes $=\infty$)

Example: Evaluate $\int_{2}^{\infty} e^{-4 x} d x$

1) Evaluate $\int_{2}^{R} e^{-4 x} d x \int_{2}^{R} e^{4 x} d x$

$$
\begin{aligned}
& =-\left.\left.\frac{1}{4} e^{-4 x}\right|_{2} ^{R} \frac{1}{4} e^{4 x}\right|_{2} ^{R} \\
& =-\frac{1}{4} e^{-4 R}-\frac{-1}{4} e^{-8 \frac{-4 R e^{8}}{4}} \\
& =\frac{e^{-8}-e^{-4 R}}{4} \quad \frac{\infty}{\infty} \quad \text { Diverges. }
\end{aligned}
$$

2)

$$
\lim _{R \rightarrow \infty} \frac{e^{-8}-e^{-4 R}}{4}=\frac{e^{-8}}{4} \text { exists }
$$

Therefore $\int_{2}^{\infty} e^{-4 x} d x$ con verges ad equal o $e^{-8 / 4}$

3 Unbounded Integrands
What happens if the integrand goes to infinity? We think about it the same way.

1. Figure out where the problematic pant is.
2. Replace the problematic point by R.
3. Evaluate the integral
4. Limit R to the problematic point from the proper side.

Example: Calculate $\int_{1}^{5} \frac{1}{(x-1)^{2 / 3}} d x$ and $\int_{1}^{5} \frac{1}{(x-1)^{8 / 3}} d x$

- Both functions have an asymptote at

$$
\begin{aligned}
& \int_{R}^{5} \frac{1}{(x-1)^{2 / 3}} d x=\left.3(x-1)^{1 / 3}\right|_{R} ^{5} \\
&=3(4)^{1 / 3}-3(R-1)^{1 / 3}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{1}^{5} \frac{1}{(x-1)^{1 / 3}} d x=\lim _{h \rightarrow 1^{+}} \int_{R}^{5} \frac{1}{(x-1)^{1 / 3}} d x \\
&=\lim _{R \rightarrow 1^{+}} 3(4)^{1 / 3}-3(R-1)^{1 / 3} \\
&=3(4)^{1 / 3} \text { so converges } \\
& \text { to this! }
\end{aligned}
$$

$$
\begin{aligned}
& \int_{1}^{5} \frac{1}{(x-1)^{5 / 3}} d x \\
& \int_{R}^{5} \frac{1}{(x-1)^{5 / 3}} d x=\left.\frac{3}{5} \frac{1}{(x-1)^{5 / 3}}\right|_{R} ^{5} \\
&=\frac{3}{5}\left(\frac{1}{4^{5 / 3}}-\frac{1}{(R-1)^{5 / 3}}\right) \\
& \int_{1}^{5} \frac{1}{(x-1)^{\delta / 3}} d x=\lim _{R \rightarrow 1^{+}} \frac{3}{5}\left(\frac{1}{4^{5 / 3}}-\frac{1}{(R-1)^{5 / 3}}\right)
\end{aligned}
$$

Limit does nat exist $\int_{1}^{5} \frac{1}{(x-1)^{\text {b/s}}} d x \quad$ diverges.

4 The p-integral and the Comparison Test
The p-integral is defined as $\int \frac{1}{x^{p}} d x$. What regions would cause this to be an improper integral? When does it converge?

$$
\begin{aligned}
& \int_{0}^{a} \frac{1}{x^{p}} d x \\
& p \neq 1 \int_{a}^{\infty} \frac{1}{x^{p}} d x \\
& \left.\right|_{R} ^{a} \int_{a}^{a} \frac{1}{x^{p}} d x=\frac{1}{1-p}\left(R^{L-p}-a\right) \\
& \begin{aligned}
\int_{R}^{a} \frac{1}{x^{p}} d x & =\left.\frac{1}{1-p} x^{1-p}\right|_{R} ^{a} \\
& =\frac{1}{1-p}\left(a^{1-p}-R^{1-p}\right)
\end{aligned} \\
& \int_{0}^{a} \frac{1}{x^{p}} d x= \begin{cases}\text { diverges } & p \geqslant 1 \\
\frac{a^{1-p}}{1-p} & p<1\end{cases} \\
& \int_{a}^{\infty} \frac{1}{x^{p}} d x=\left\{\begin{array}{ll}
8 \frac{a^{1-p}}{p-1} & p>1 \\
\text { diverqus } & p \leq 1
\end{array}\right\}
\end{aligned}
$$

Comparison Test

- Answer convergence with at evaluating.

$\int_{1}^{\infty} f(x) d x$ does not exist if the region under f contain infinite area.
- Area under g is less than area under t. If f contains a finite area, then so does g.
If g contains an infinite area then so does f.

Comparison Jest
Let $f(x), g(x)$ be two continues functions with $f(x) \geq g(x) \geq 0$.

- If $\int_{a}^{\infty} f(x) d x$ converges, then

$$
\int_{a}^{\infty} g(x) d x \text { also converges. }
$$

- If $\int_{a}^{\infty} g(x) d x$ diverges, then $\int_{a}^{\infty} f(x) d x$ also diverges.

5 Multiple Issues

If there are multiple reasons or places that an integral becomes improper, you have to take care of each one separately.
Example: Evaluate $\int_{-2}^{3} \frac{1}{2} d x=\left.\frac{1}{-4} x^{-4}\right|_{-2} ^{3}=\frac{1}{4}\left(\left[(-2)^{-4}-(3)^{-4}\right)\right.$
\rightarrow Vertical Asymptote at \mathcal{O}
Makes this an improper integral problem

$$
\begin{aligned}
\int_{-2}^{3} \frac{1}{x^{5}} d x & =\int_{-2}^{0} \frac{1}{x^{5}} d x+\int_{0}^{3} \frac{1}{x^{5}} d x \\
\int_{-2}^{R} \frac{1}{x^{5}} d x & =-\left.\frac{1}{4}\left(x^{-4}\right)\right|_{-6} ^{R} \rightarrow \text { diverges } \\
& =-\frac{1}{4}(\underbrace{}_{\left.\frac{1}{R^{-4}}-(-2)^{-4}\right)}
\end{aligned}
$$

Since $\int_{-2}^{0} \frac{1}{x^{5}} d x$ diverges, so does $\int_{-2}^{\infty} \frac{1}{x^{5}} d x$

Example: Calculate $\int_{-2}^{1} \frac{1}{2^{2 / 5}} d x=\int_{-2}^{0} \frac{1}{x^{1 / 5}} d x+\int_{0}^{0} \frac{1}{x^{8 / 5}} d x$

- Vertical Asymptote at O again.

$$
\begin{aligned}
& \text {-Vertical Asymptote at } 0 \text { again. } \\
& \int_{-2}^{R} \frac{1}{x^{2 / 5}} d x=\left.\frac{5}{3} x^{3 / 5}\right|_{-2} ^{R}=\frac{5}{3}\left(R^{3 / 5}-(-2)^{3 / 5}\right) \\
& \lim _{R \rightarrow 0^{-}} \frac{5}{3}\left(R^{3 / 5}-(-2)^{3 / 5}\right)=\frac{-5}{3}(-2)^{3 / 5} \\
& \int_{R}^{1} \frac{1}{x^{2 / 5}} d x=\left.\frac{5}{3} x^{3 / 5}\right|_{R} ^{1}=\frac{5}{3}-\frac{5}{3} R^{3 / 5} \\
& \text { converges } \lim _{R \rightarrow 0^{+}} \frac{5}{3}-\frac{5}{3} R^{3 / 5}=5 / 3 \\
& \int_{-2}^{1} \frac{1}{x^{2 / 5}} d x=5 / 3-\frac{5}{3}(-2)^{3 / 5}
\end{aligned}
$$

Example: Evaluate $\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x=\int_{-\infty}^{0} \frac{1}{1+x^{2}} d x+\int_{0}^{\infty} \frac{1}{1+x^{2}} d x$

- Handle $+\infty$ and $-\infty$ separately

$$
\begin{aligned}
& \int_{R}^{0} \frac{1}{1+x^{2}} d x=\left.\tan ^{-1}(x)\right|_{R} ^{0}=\tan ^{-1}(0)-\tan ^{-1}(R) \\
& \lim _{R \rightarrow-\infty}-\tan ^{-1}(R)=\pi / 2 \\
& \int_{0}^{R} \frac{1}{1+x^{2}} \text { converges } \lim _{R \rightarrow \infty} \tan ^{-1}(R)=\pi / 2
\end{aligned}
$$

$$
\begin{aligned}
& 1+x^{2} \\
& \text { converges } \\
& \lim _{R \rightarrow \infty} \operatorname{tar}^{-1}(R)=\pi / 2 \\
& \hline
\end{aligned}
$$

$$
\varsigma_{0} \int_{\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x=\pi / 2+\pi / 2}^{\operatorname{lo\infty }}=\pi
$$

