Arc Length and Area in Polar Coordinates

Learning Goals

- Find the area of a region bounded by a polar curve
- Find the area of a region between two polar curves
- Find the arc length of a polar curve

Contents

1 Area for Polar Functions 2

2 More Examples 7

3 Arc Length 9

1 Area for Polar Functions

Assume that we write $r=f(\theta)$ with $f(\theta)>0$ for $\alpha \leq \theta \leq \beta$. We want to find the area enclosed inside the graph and the sector between $\theta=\alpha$ and $\theta=\beta$.

\rightarrow Would be very complicated in Cartesian coordinates.

$$
\begin{aligned}
& \text { coordinates. } \\
& \rightarrow \text { polar makes this easier. }
\end{aligned}
$$

How do we find this area here?

- chop in little increments y

(A) Region $\alpha \leq \theta \leq \beta$

(B) Region divided into narrow sectors

Rogawski et al., Calculus: Early Transcendentals, 4e, © 2019 W. H. Freeman and Company

We want to add up all of these little triangles/sectors.

Theorem. If f is a continuous function with $f \geq 0$ then the area bounded
by a curve in polar form $r=f(\theta)$ and the rays $\theta=\alpha$ and $\theta=\beta$ is given bu

$$
\int_{\alpha}^{\beta} \frac{1}{2} r^{2} d \theta=\int_{\alpha}^{\beta} \frac{1}{2} f(\theta)^{2} d \theta
$$

Circle of radius $R \quad f(\theta)=R$

$$
\int_{0}^{2 \pi} \frac{1}{2} R^{2} d \theta=\left.\frac{1}{2} R^{2} \theta\right|_{0} ^{2 \pi}=\pi R^{2}
$$

How does this give area?

Example: Find the area of the portion of the circle $r=2 \cos \theta$ between the

$$
\begin{aligned}
& \left.\int_{-\pi / 4}^{\pi / 4} \frac{1}{2}(f \mid \theta)\right)^{2} d \theta=\frac{1}{2} \int_{-\pi / 4}^{\pi / 4} 4 \cos ^{2} \theta d \theta \\
& \quad=\frac{1}{2} \cdot 4 \int_{-\pi / 4}^{\pi / 4} \frac{1+\cos 2 \theta}{2} d \theta=\theta+\left.\frac{\sin 2 \theta}{2}\right|_{-\pi / 4} ^{\pi / 4} \\
& =\pi / 4+\frac{\sin ^{2} \pi / 2}{2}-\left(-\pi / 4+\frac{\sin \varphi^{\pi / 2}}{2}\right)=\frac{\pi}{2}+1
\end{aligned}
$$

2 More Examples

Example: Find the area of one petal of the graph $r=\sin 5 \theta$

Example: Find the area inside the circle $r=4 \cos \theta$ and outside the circle

$$
4 \cos \theta=2
$$

$$
\cos \theta=1 / 2
$$

$$
\theta= \pm \pi / 3
$$

$$
\text { Area }=\int_{-\pi / 3}^{\pi / 3} \frac{1}{2}(4 \cos \theta)^{2}-\frac{1}{2}(2)^{2} d \theta
$$

$$
\begin{aligned}
& =\int_{-\pi / 3} \frac{1}{2}(4 \cos) \\
& =\int_{-\pi / 3}^{\pi / 3} 8 \underbrace{\frac{\cos ^{2} \theta}{2 \tan \theta}}-2 d \theta=\int_{-\pi / 3}^{\pi / 3} 2+4 \cos 2 \theta d \theta \\
& =4 \pi+2 \sqrt{3}
\end{aligned}
$$

3 Arc Length
Let's now try to figure out a new arc length formula in polar coordinates What was our parametric formula?

$$
s=\int_{a}^{b} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t
$$

How can we get a formula in polar coordinates?
We hove x and y in terms of r and θ.
\rightarrow Set $r=f(0)$
\rightarrow plug everything in
\rightarrow Hope for a nice formula.

$$
\begin{gathered}
\sqrt{x^{\prime}(t)^{2}+y^{\prime}+1^{2}} \\
x(\theta)=r \cos \theta=f(\theta) \cos \theta \\
x^{\prime}(\theta)=f^{\prime}(\theta) \cos \theta-f(\theta) \sin \theta \\
y(\theta)=f(\theta) \sin \theta \\
y^{\prime}(\theta)=f^{\prime}(\theta) \sin \theta+f(\theta) \cos \theta \\
\begin{array}{r}
x^{\prime}(\theta)^{2}=f^{\prime}(\theta)^{2} \frac{\cos ^{2} \theta-2 f^{\prime}(\theta) f(\theta) \cos \theta \sin \theta}{2}+\frac{f(\theta)^{2} \sin \theta}{2 f^{2}(\theta) f(\theta) \cos \theta \sin \theta} \\
+f^{\prime}(\theta)^{2} \cos 2 \theta \\
\left.y^{\prime}(\theta)^{2}=f^{\prime}(\theta)^{2} \sin ^{2} \theta+2\right)^{2}+f(\theta)^{2}
\end{array} \\
x \frac{x^{\prime}(\theta)^{2}+y^{\prime}(\theta)^{2}=f^{10}}{x}
\end{gathered}
$$

Theorem. Let $f^{\prime}(\theta)$ be continuous on $[\alpha, \beta]$. Then the arc length s of the curve $r=f(\theta)$ is given by

$$
S=\int_{\alpha}^{\beta} \sqrt{\frac{f(\theta)^{2}+f^{\prime}(\theta)^{2}}{x^{\prime}(\theta)^{2}+y^{\prime}(\theta)^{2}}} d \theta
$$

\rightarrow Might be impossible to work out by hand.

Example: Find the length of one petal the curve $r=\sin (5 \theta)$.
We know that ore petal is from

$$
\begin{aligned}
& \theta=0 \text { to } \theta=\pi / 5 \\
& f(\theta)=\sin (5 \theta) \quad f^{\prime}(\theta)=5 \cos (5 \theta) \\
& S=\int_{0}^{\pi / 5} \sqrt{\sin ^{2}(5 \theta)+25 \cos ^{2}(5 \theta)} d \theta \\
& S=\int_{0}^{\pi / 3} \sqrt{1+24 \cos ^{2}(5 \theta)} d \theta \\
& S / 2.101
\end{aligned}
$$

