Arc Length and Area in Polar Coordinates

Learning Goals

- Find the area of a region bounded by a polar curve
- Find the area of a region between two polar curves
- Find the arc length of a polar curve

Contents

1	Area for Polar Functions	2
2	More Examples	7
3	Arc Length	9

1 Area for Polar Functions

Assume that we write $r = f(\theta)$ with $f(\theta) > 0$ for $\alpha \le \theta \le \beta$. We want to find the area enclosed inside the graph and the sector between $\theta = \alpha$ and $\theta = \beta$.

- Would be very complicated in Cartesian coordinates. -> Polor Makes this easier.

(A) Region $\alpha \le \theta \le \beta$ (B) Region divided into narrow sectorsRogawski et al., Calculus: Early Transcendentals, 4e, © 2019 W. H. Freeman and Company

We want to add up all of these little triangles/sectors.

Theorem. If f is a continuous function with $f \ge 0$ then the area bounded by a curve in polar form $r = f(\theta)$ and the rays $\theta = \alpha$ and $\theta = \beta$ is given by

$$\begin{cases} \frac{\beta}{2}r^{2}d\theta = \int_{2}^{\beta}\frac{1}{2}f(\theta)^{2}d\theta \\ \frac{\beta}{2}r^{2}d\theta = \int_{\alpha}^{\beta}\frac{1}{2}f(\theta)^{2}d\theta \\ \frac{\beta}{2}r^{2}d\theta =$$

Circle g radius
$$R$$
 $f(0)=N$
 $\int_{0}^{2\pi} \frac{1}{2} R^{2} d\theta = \frac{1}{2} R^{2} \theta \int_{0}^{2\pi} \frac{1}{2} \frac{\pi R^{2}}{2} d\theta$

How does this give area?

Example: Find the area of the portion of the circle $r = 2\cos\theta$ between the

2 More Examples

Example: Find the area of one petal of the graph $r = \sin 5\theta$

Example: Find the area inside the circle $r = 4 \cos \theta$ and outside the circle r = 2.

3 Arc Length

Let's now try to figure out a new arc length formula in polar coordinates. What was our parametric formula?

$$S = \int_{a}^{b} (x'(4))^{2} + (\xi'(4))^{2} dt$$

How can we get a formula in polar coordinates?

Λ

Algebra
$$\sqrt{\chi'(f)^{2} + y'^{2}f_{1}^{2}}$$

 $\chi(0) = f(0) = f(0) (0) = f(0) (0) (0)$
 $\chi'(0) = f'(0) (0) = f(0) \sin \theta$
 $y(0) = f(0) \sin \theta$
 $y'(0) = f'(0) \sin \theta + f(0) (0) (0)$
 $\chi'(0)^{2} = f'(0)^{2} (0) - 2f'(0) f(0) (0) \sin \theta$
 $+ f(0)^{2} \sin^{2}\theta$
 $+ f(0)^{2} (0) + 2f'(0) f(0) (0) \sin \theta$
 $+ f(0)^{2} (0)^{2} = f'(0)^{2} f(0) (0) \cos \theta$
 $+ f(0)^{2} (0)^{2} + f(0)^{2} (0) + 2f'(0)^{2} + f(0)^{2}$
 $\chi'(0)^{2} + \chi'(0)^{2} = f'(0)^{2} + f(0)^{2}$

Theorem. Let $f'(\theta)$ be continuous on $[\alpha, \beta]$. Then the arc length s of the curve $r = f(\theta)$ is given by

Example: Find the length of one petal the curve $r = \sin(5\theta)$.

We know that one petal is from Q=O to $Q=\pi/s$ f(Q)=Sm(SO) f'(Q)=S(SO)

