Ratio and Root Tests

Learning Goals

- Determine if a series converges or diverges using the ratio test
- Determine if a series converges or diverges using the root test
- Choose an appropriate convergence test for a series
- Determine if a series converges or diverges using any method/test

Contents

1 Ratio Test

2 Root Test 4

3 Proof of Ratio Test

4 Choosing Tests

1 Ratio Test

This section covers two more tests for evaluating whether or not a series converges or diverges. They work for series with both positive and negative terms, but sort of ignore that fact by taking absolute values first. The extra benefit they have is that they do not require the series to alternate in order to give a result.

Theorem (Ratio Test). Let $\sum a_{n}$ be a series that we want to analyze. Assume that the following limit exists

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \geq 0
$$

∞
Then

$$
\text { If } \rho<1 \text {, this series } \sum_{n=1}^{\infty} a_{n} \text { converges } \text { absolvely. }
$$

$$
\begin{aligned}
& \text { If } \rho>1 \text {, this series diverges. } \\
& \text { If } p=1 \text {, the test is incurcluyve. }
\end{aligned}
$$

The idea as to why this works is direct comparison to a geometric series, which we will illustrate later.

Example: Does $\sum_{n=1}^{\infty} \frac{n^{2}}{3^{n}}$ converge?
Ratio Test

$$
\begin{aligned}
& \text { Ratio Test } \\
& \rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)^{2} / 3^{n+1}}{n / 3^{n}}\right| \\
&=\lim _{n \rightarrow \infty}\left|\frac{(n+1)^{2}}{n^{2}} \cdot \frac{3^{n}}{3^{n+1}}\right| \\
&=\lim _{n \rightarrow \infty}\left|\frac{(n+1)^{2}}{n^{2}} \cdot \frac{1}{3}\right| \\
&=\frac{1}{3} \lim _{n \rightarrow \infty}\left|\frac{(n+1)^{2}}{n^{2}}\right|=1 / 3 \\
& 1
\end{aligned}
$$

Since $\rho<1$, this series converges by the ratio test.

2 Root Test

The other test we have in this section is the Root Test. It does the same thing, but with roots instead of ratios.

Theorem (Root Test). Let $\sum a_{n}$ be a series that we want to analyze. Assume that the following limit exists

$$
t=\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}
$$

$$
\begin{aligned}
& \text { If } t<1, \sum_{n=1}^{\infty} a_{n} \text { converges absolutely. } \\
& \text { If } t>1, \sum_{n=1}^{\infty} a_{n} \text { diverges. }
\end{aligned}
$$

If $t=1$, test is inconclusive.

The idea of the proof is the same, but it is more complicated.

Example: Does $\sum_{n=1}^{\infty}\left(\frac{2 n}{n+4}\right)^{n}$ \qquad

$$
\begin{aligned}
& \frac{\text { Root Test }}{t=\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}}=\lim _{n \rightarrow \infty} \sqrt[n]{\left(\frac{2 n}{n+4}\right)^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{2 n}{n+4}=2
\end{aligned}
$$

Since $t>1$, the series $\sum_{n=1}^{\infty}\left(\frac{2 n}{n+4}\right)^{n}$ diverges by the root test.

3 Proof of Ratio Test
Direct Comparison to

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|
$$

a geometric Series.
"almost geometric at the end"
$p>r>1$
Assume $p<1$. Pick $r=\frac{p+1}{2} \quad \rho<r<1$.
There is N so that if $n \geq N \quad\left|\frac{a_{n+1}}{a_{n}}\right|<r$

$$
\begin{aligned}
& \left|a_{N+1}\right| \leq r\left|a_{N}\right| \\
& \left|a_{N+2}\right| \leq r\left|a_{N+1}\right|<r^{2}\left|a_{N}\right| \\
&
\end{aligned}
$$

For ark $\underbrace{\left|a_{N+k}\right| \leq r^{k}\left|a_{N}\right|}$
My Series Geometric that converges \sum_{1}, a a_{N+k} converges by direct comparison with $r^{k}\left|a_{N}\right|$
So $\sum_{n=1}^{\infty} a_{n}{ }^{6}$ Con verges absolutely.

Example: Does $\sum_{n=2}^{\infty} \frac{5^{n}}{n!}$ converge or diverge?
Ratio Test

$$
\begin{aligned}
& \text { Ratio Test } \\
& \begin{aligned}
p & =\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{5^{n+1} /(n+n)!}{5^{n} / n!}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{5^{n+1}}{5^{n}} \cdot \frac{n!}{(n+1)}!\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{5}{n+1}\right|=0
\end{aligned}
\end{aligned}
$$

Since $p<l$, the series $\sum_{n=2}^{\infty} \frac{s^{n}}{n!}$ converges absolutely by the ratio test.

4 Choosing Tests
How do we choose which test to use in a given case? Which is the best order to attempt these tests to make the process as simple as possible? First, try the nth term divergence test. Remember this can only tell you that a series diverges, not that it converges.
If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum_{n=1}^{\infty} a_{n}$ diverges.

* Only says that a series diverges $\#$

$$
\sum_{n=1}^{\infty} \frac{\sin (n)+n^{2}}{n^{2}+1} \quad \begin{gathered}
\text { Limit it is } 1 \\
\text { so diverges. }
\end{gathered}
$$

If a series does not have all positive terms, you have basically two options:

1. Alternating Series Test
\rightarrow Requires the series to be alternating.
\rightarrow Pretty easy to apply after that.

$$
\sum_{1}(-1)^{n} b_{n}
$$ $b_{n} 20$, decreasing $b_{n} \rightarrow 0$

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}
$$

converges by Alternation series Test.
2. Take the absolute value of the terms and apply "positive terms" tricks.
\rightarrow Looking for absolute convergence.

If a series has positive terms (or you made it that way by taking absolute values) now we have more options.
(a) Direct Comparison Test

Is there a way I con make my series bigger (smaller) and get convergence (divergence)?
\rightarrow In general, compare to p-series.
\rightarrow Dropping terms from numerator or denominator.

$$
\sum_{n=2}^{\infty} \frac{n^{2}-1}{n^{4}+3}
$$

(b) Limit Comparison test

- Are there dominant terms in the numerator and denominator that will help re get convergence?
\rightarrow Don't have to worry abut t bigger or smaller.
\rightarrow Need to pick some thing that approximates my series.

$$
\underbrace{\lim _{n \rightarrow \infty}}_{\text {converges. }^{\infty} \frac{n^{2}+1}{n^{4}-3}} \quad \frac{b_{n}=1 / n^{2}}{b_{n}}=1
$$

(c) Ratio Test

- Factorials
- Polynomials and numbers raised to the $n^{\text {th }}$ power.
\rightarrow Make the expression nice to take the limit of.

$$
\sum_{n=2}^{\infty} \frac{3^{n}}{n!} \quad \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{3}{n+1}
$$

$$
=2
$$

(d) Root Test

- Expressions of n raised to the $n^{\text {th }}$ power.

$$
\cdot f(n)^{g(n)}
$$

\rightarrow When taking the $n^{\text {th }}$ root makes things simpler.

$$
\underbrace{\sum_{n=3}^{\infty}\left(\frac{2 n}{5-6 n}\right)^{n} \quad \sqrt[n]{\left|a_{n}\right|}=\frac{2 n}{6 n-5}}_{\text {converges. }}
$$

(e) Integral Test

- If I convert n to $x, \operatorname{con} I$ integrate this?
\rightarrow Works every time IF you con find the integral.

$$
\sum_{n=4}^{\infty} \frac{1}{n \ln (n)}
$$

$$
\begin{aligned}
& \int_{2}^{\infty} \frac{1}{x \ln (x)} d x \\
& \int_{\operatorname{lan}}^{\infty} \frac{1}{u} d u \text { ln }(x)
\end{aligned}
$$

Examples: Analyze each of the following series and determine whether they converge or diverge.

$$
\sum_{n=1}^{\infty} \frac{1}{(n+2)^{n}}
$$

Limit Comparison

$$
b_{n}=Y / n^{2}
$$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} & =\lim _{n \rightarrow \infty} \frac{1 / n^{2}-\sqrt{n}}{1 / n^{2}} \\
& =\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}-\sqrt{n}}=1
\end{aligned}
$$

Since $\sum_{n=2}^{\infty} y_{n^{2}}$ converges, so does

$$
\sum_{n=2}^{\infty} \frac{1}{n^{2}-\sqrt{n}}
$$

Ratio Test

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{(n+1)!/(2(n+1))!}{n!((2 n)!}\right|
$$

$$
=\lim _{n \rightarrow \infty}\left|\frac{(n+1)!}{n!} \cdot \frac{(2 n)!}{(2 n+2)!}\right|
$$

$$
=\lim _{n \rightarrow \infty}\left|n+1 \cdot \frac{1}{(2 n+1)(2 n+2)}\right|
$$

$$
=\lim _{n \rightarrow \infty}\left|\frac{n+1}{(2 n+1)(2 n+2)}\right|=0<1
$$

So $\sum_{n=1}^{m} \frac{n!}{(2 n)!}$ converges.
$\sum_{n=1}^{\infty} \sum_{n!}^{3^{n}}$ Converges.
Ratio Jest

$$
\begin{aligned}
& \text { atio Jest } \\
& \rho=\lim _{n \rightarrow \infty}\left|\frac{3^{n+1} /(n+1)!}{3^{n} / n!}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{3}{n+1}\right|=0
\end{aligned}
$$

