Conditional Convegence and Alternating Series

Learning Goals

- Understand the difference between absolute and conditional convergence
- Determine whether a series converges absolutely or conditionally
- Identify a series as an alternating series
- Use the Alternating Series Test to determine if a series converges
- Determine how many terms are needed to accurately approximate the sum of an alternating series

Contents

1 Absolute and Conditional Convergence 2

2 Alternating Series 5

3 Proof of Alternating Series Test 9

4 Error Bound on Alternating Series 12

1 Absolute and Conditional Convergence

Now, we want to start looking an series that don't necessarily have positive terms. Being able to handle series like this is really important for dealing with Taylor Series. We need a few definitions in order to handle these series.

Definition. We say that the series $\sum a_{n}$ converges absolutely if
$\sum\left|a_{n}\right|$ converges.
\rightarrow This is a Series with positive terms.

Example: Does $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n^{4}}$ converge absolutely? What about $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$?

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n^{4}}
$$

$$
\rightarrow \sum_{n=2}^{\infty}\left|\frac{(-1)^{n}}{n^{4}}\right|=\sum_{n=2}^{\infty} \frac{1}{n^{4}}
$$

\rightarrow Converges Absolutely
Converges by p-series.

$$
\begin{array}{r}
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \rightarrow \sum_{n=1}^{\infty}\left|\frac{(-1)^{n-1}}{n}\right|=\sum_{n=1}^{\infty} 1 / n \\
\text { Diverges by } p \text {-series }
\end{array}
$$

\rightarrow Dies not converge absolutely.
or If $\sum a_{n}$ converges absolutely, then $\sum_{1} a_{n}$ converges.

Why does this make sense?

$$
-\left|a_{n}\right| \leq a_{n} \leq\left|a_{n}\right|
$$

$$
0 \leq \underbrace{a_{n}+\left|a_{n}\right|}_{\text {Converges by }} \leq 2\left|a_{n}\right|
$$

Converges by This series
Direct comparison Direct comparison will carole

But, this is not the only way to get convergence for a series that has terms that could be positive or negative. This gives rise to another definition.

Definition. An infinite series $\sum a_{n}$ converges conditionally if

* A series can not converge conditionally
and converge absolutely.

This part is hard, and the rest of this section covers a way to know if a series converges conditionally.

- We will develop are specif method for this.

2 Alternating Series

For series with not necessarily positive terms, there aren't too many ways to determine if the series converges conditionally. There are a few methods that we will not discuss in this class, but the main one that we will discuss here involves alternating series.

Definition. A series is alternating if it is of the form

$n=1$

$n=1$

$$
\rightarrow \text { Terms need to alternate sign }
$$

Examples:

$$
\begin{aligned}
& \sum_{n=2}^{\infty} \frac{(-1)^{n}}{n^{2}} \quad b_{n}=\frac{1}{n^{2}} \\
& =\frac{1}{4}-\frac{1}{9}+\frac{1}{10}-\frac{1}{25}+\frac{1}{36} \cdots \\
& \sum_{n=1}^{\infty} \frac{\cos (n \pi)}{n}=-1+\frac{1}{2}-\frac{1}{3} \cdots
\end{aligned}
$$

$\sum_{n=1}^{\infty} \frac{\sin (n \pi / 4)}{n^{2}}$ №t alternating

Theorem. Alternating Series Test Assume that $\left\{b_{n}\right\}$ is a positive sequince that is decreasing and converges to zero:

$$
\text { - } b_{n} \geq 0, \cdot b_{n+1} \leq b_{n}
$$

$-\lim _{n \rightarrow \infty}^{a d} b_{n}=0$
Then, the following alternating series converges:

Furthermore, if S is this sum, then

Example: Consider the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$. Does this converge? What can we say about the limit?

- This series is alternating $b_{n}=1 / n$
- $b_{n} \geq 0$, b_{n} decreasing

$$
\lim _{n \rightarrow \infty} b_{n}=0
$$

Therefore, by the Alternating Series Test, $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ con verges.

- Since $\sum_{n=1}^{\infty} 1 / n$ diverges, $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ converges conditionally.
$k_{\text {now }}:-1<S<0 \quad-1<S<-1 / 2$

3 Proof of Alternating Series Test

What is the idea of the proof?
$b_{n} \geq 0$
$\left.\sum_{1}(-1)^{n-1}\right)_{n}$ converges b_{n} decreasing $b_{n} \rightarrow 0$

SN

Convergence because odd partial sums are decreasing and banded, and even partial sums are increasing and bounded.
\Rightarrow Sequence of partial sums converges.

What is the point of this?

- Very easy way to determine if an alternating series Converges.
- Verify alternating
- bn positive, decreasing, $\rightarrow 0$.
- 'Alternating' isn't that rare \rightarrow Shows up in Power Series.

Example: Show that $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2 / 3}}$ converges conditionally. Furthermore if S
is the sum, then $-1 \leq \stackrel{n=1}{S} \leq 0$.
Convergence: Alternating series test

$$
b_{n}=1 / n^{2 / 3}
$$

- Positive Therefore converges
- Decreasing
by Alternating Series
- Goes to 0 . Test.

Absolute Convergence: $\sum_{n=1}^{\infty} 1 / n^{2 / 3}$ by poperies.
So $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2 / 3}}$ converges conditionally.

$$
\text { Frost term }=-1 \text { so } \quad-1 \leq S \leq 0
$$

4 Error Bound on Alternating Series

While the Alternating Series Test doesn't give us a way to compute the sums of series, it says they converge, but can get us pretty close.

Corollary. Let $S=\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}$ where $\left\{b_{n}\right\}$ is a positive decreasing sequince that converges to 0 . Then the series converges by ASJ.
And if $S_{N}=\sum_{1}^{N}(-1)^{n-1} b_{n}$, then
$n=1$

$$
\left|s-s_{N}\right| \leq b_{N+1}
$$

Idea:

Example: Analyze $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$. Does it converge? What else do we know about it? How close is S_{10} to the limit S ?

$$
b_{n}=\frac{1}{n}-\rightarrow 0
$$ $n=1$

So this series converges by Alternating Series Test. Furthermore, ${ }^{\infty} \sum_{1} \frac{1}{n}$ diverges,
$0=1$
we know this converges conditionally.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{\sqrt{n^{2}+1}} \quad \sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{n \ln n}
$$

- Both are alternating series.

1) $b_{n}=\frac{n}{\sqrt{n^{2}+1}} \quad \lim _{n \rightarrow \infty} b_{n}=1 \neq 0$
\rightarrow Alternating series test does not apply.
$\lim _{n \rightarrow \infty}(-1)^{n} \frac{n}{\sqrt{n^{2}+1}}$ does not exist
So this diverges by the $n^{\text {th }}$ term divergence test.
2) $b_{n}=\frac{1}{n \ln n}$

- positive

So $\sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{n \ln n}$
Converges by Alternating Series Test.
Integral Test to $b_{n}=\frac{14}{n \ln n} \rightarrow$ Diverges Converges Conditionally

