
Method of Partial Fractions

Learning Goals

• Find the partial fraction decomposition of a given rational function

• Integrate a rational function by first using long division and then the
method of partial fractions

• Integrate a rational function with linear and/or irreducible quadratic
factors with multiplicity 1 using the method of partial fractions

• Integrate a rational function with repeated linear and/or irreducible quadratic
factors using the method of partial fractions
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1 Partial Fraction Decompositions

In this section, we have one more technique for doing integrals. We’ll start
by setting this up and then see how it helps with integrals.

What is a Partial Fraction Decomposition?
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What do we know?

If
p(x)

q(x)
is a rational function with degree of p(x) less than the degree of q(x),

and q(x) can be written as

q(x) = (x− a1)(x− a2) · · · (x− ak)
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Example: Find the Partial Fraction Decomposition for

2x2 + 5x− 12

x(x− 4)(x + 1)
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2 Value Substitution and Integrals

For more complicated polynomials, it can be difficult to solve for the necessary
coefficients by this method. However, we have another trick we can use.
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Example: Compute

∫
x2 + 3

(x + 1)(x + 2)(x− 4)
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3 Irreducible Quadratics

The method as described previously works when the integrand is a rational
function with the following properties:

• The denominator can be completely factored into linear factors

• No linear factor is repeated in this factorization

• The degree of the numerator is less than the degree of the denominator

We will now deal with each of the conditions above, so that we end up with
a method that works for all rational functions.

Not all linear factors

Not all polynomials can be completely factored into linear factors.
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Handling Quadratics

In order to get the right number of coefficients to make these systems work,
we need to have both an x term and a constant term on top of the irreducible
quadratic.
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Example: Compute

∫
3x + 4

(x− 1)(x2 + 9)
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4 Repeated Factors

What happens if a factor is repeated in the denominator?
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Example: Compute

∫
2x

(x + 1)2(x− 3)
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5 Long Division

What if the degree on top is higher than the bottom? We can’t solve it in
the normal way, because we don’t have enough information.
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Example: Compute

∫
x3 + 2x + 1

x2 − 1
dx
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6 Combining all the Adjustments

Some problems need more than one of these adjustments, and also add in
completing a square.

Example: Compute

∫
25

x(x2 + 2x + 5)2
dx
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