Integration by Parts

Learning Goals

- Identify when an integral requires integration by parts
- Compute integrals using integration by parts
- Identify which factor of a product should be integrated and which should be differentiated
- Evaluate integrals that require "circular" or repeated integration by parts

Contents

1	Basic Formula	2
2	Using Integration by Parts	6
3	Circular Integration by Parts	8
4	Definite Integration By Parts	10
5	Other Integrations by Parts	12

1 Basic Formula

The theme for this next chapter is integration techniques, more tricks to work towards evaluating integrals that aren't just derivatives of functions already known.

Product Rule

Recall the product rule for differentiation.

Integration by Parts

Example: Compute $\int xe^x dx$

2 Using Integration by Parts

What tricks can be used to analyze an integral to figure out how to apply integration by parts?

Example: Compute $\int x^2 \sin x \, dx$

3 Circular Integration by Parts

Some integration by parts problems make it hard to tell there is progress being made.

Example: Compute $\int x^2 \sin x \, dx$

Example: Compute $\int e^x \cos x \, dx$

4 Definite Integration By Parts

Everything discussed so far has been indefinite integrals. What happens if these are definite integrals?

Example: Compute $\int_2^5 t \ln t \, dt$

5 Other Integrations by Parts

This technique also allows for computing the integrals of some other functions that could not be done before.

Example: Find $\int \ln x \, dx$