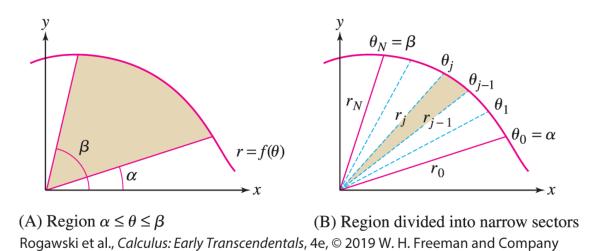
Arc Length and Area in Polar Coordinates

Learning Goals

- Find the area of a region bounded by a polar curve
- Find the area of a region between two polar curves
- Find the arc length of a polar curve


Contents

1	Area for Polar Functions	2
2	More Examples	7
3	Arc Length	9

1 Area for Polar Functions

Assume that we write $r = f(\theta)$ with $f(\theta) > 0$ for $\alpha \le \theta \le \beta$. We want to find the area enclosed inside the graph and the sector between $\theta = \alpha$ and $\theta = \beta$.

How do we find this area here?

We want to add up all of these little triangles/sectors.

Theorem. If f is a continuous function with $f \ge 0$ then the area bounded by a curve in polar form $r = f(\theta)$ and the rays $\theta = \alpha$ and $\theta = \beta$ is given by

How does this give area?

Example: Find the area of the portion of the circle $r=2\cos\theta$ between the rays $\theta=-\pi/4$ and $\theta=\pi/4$.

2 More Examples

Example: Find the area of one petal of the graph $r = \sin 5\theta$

Example: Find the area inside the circle $r=4\cos\theta$ and outside the circle r=2.

3 Arc Length

Let's now try to figure out a new arc length formula in polar coordinates. What was our parametric formula?

How can we get a formula in polar coordinates?

Algebra

Theorem. Let $f'(\theta)$ be continuous on $[\alpha, \beta]$. Then the arc length s of the curve $r = f(\theta)$ is given by

Example: Find the length of one petal the curve $r = \sin(5\theta)$.