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Abstract

Phase separation processes in compound materials can produce intriguing and com-

plicated patterns. Yet, characterizing the geometry of these patterns quantitatively can

be quite challenging. In this paper we use computational algebraic topology to obtain

such a characterization. Our method is illustrated for the complex microstructures ob-

served during spinodal decomposition and early coarsening in both the deterministic

Cahn-Hilliard theory, as well as in the stochastic Cahn-Hilliard-Cook model. While

both models produce microstructures that are qualitatively similar to the ones observed

experimentally, our topological characterization points to significant differences.

Keywords: Dynamic phenomena; microstructure; phase field models; spinodal de-

composition; coarsening



1 Introduction

The kinetics of phase separation in alloys has drawn considerable interest in recent years.

Most alloys of commercial interest owe their properties to specific microstructures which are

generated through special processing techniques, such as phase separation mechanisms. In

quenched binary alloys, for example, one typically observes phase separation due to a nucle-

ation and growth process, or alternatively, due to spinodal decomposition [3, 6, 7]. While the

former process involves a thermally activated nucleation step, spinodal decomposition can be

observed if the alloy is quenched into the unstable region of the phase diagram. The resulting

inherent instability leads to composition fluctuations, and thus to instantaneous phase sepa-

ration. Common to both mechanisms is the fact that the generated microstructures usually

are thermodynamically unstable and will change in the course of time — thereby affecting

the material properties. In order to describe these and other processes, one generally relies

on models given by nonlinear evolution equations. Many of these models are phenomeno-

logical in nature, and it is therefore of fundamental interest to study how well the equations

agree with experimental observations.

In this paper, we propose a comparison method based on the geometric properties of the

microstructures. The method will be illustrated for the microstructures generated during

spinodal decomposition. These structures are fine-grained and snake-like, as shown for ex-

ample in Figure 1. The microstructures are computed using two different evolution equations

which have been proposed as models for spinodal decomposition: The seminal Cahn-Hilliard

model, as well as its stochastic extension due to Cook.

The first model for spinodal decomposition in binary alloys is due to Cahn and Hilliard [3,

6]; see also the surveys [5, 13]. Their mean field approach leads to a nonlinear evolution

equation for the relative concentration difference u = %A − %B, where %A and %B denote the
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relative concentrations of the two components, i.e., %A + %B = 1. The Ginzburg-Landau free

energy is given by

Eγ(u) =

∫

Ω

(

Ψ(u) +
γ

2
|∇u|2

)

dx , (1)

where Ω is a bounded domain, and the positive parameter γ is related to the root mean

square effective interaction distance. The bulk free energy, Ψ, is a double well potential,

typically

Ψ(u) =
1

4

(

u2 − 1
)2

. (2)

Taking the variational derivative δEγ/δu of the Ginzburg-Landau free energy (1) with respect

to the concentration variable u, we obtain the chemical potential

µ = −γ∆u +
∂Ψ

∂u
(u) ,

and thus the Cahn-Hilliard equation ∂u/∂t = ∆µ, i.e.,

∂u

∂t
= −∆

(

γ∆u − ∂Ψ

∂u
(u)

)

, (3)

subject to no-flux boundary conditions for both µ and u. Due to these boundary conditions,

any mass flux through the boundary is prohibited, and therefore mass is conserved. We

generally consider initial conditions for (3) which are small-amplitude random perturbations

of a spatially homogeneous state, i.e., u(0, x) = m+ε(x), where ε denotes a small-amplitude

perturbation with total mass
∫

Ω
ε = 0. In order to observe spinodal decomposition, the

initial mass m has to satisfy (∂2Ψ/∂u2)(m) < 0.

One drawback of the deterministic partial differential equation (3) is that it completely

ignores thermal fluctuations. To remedy this, Cook [8] extended the model by adding a
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random fluctuation term ξ, i.e., he considered the stochastic Cahn-Hilliard-Cook model

∂u

∂t
= −∆

(

γ∆u − ∂Ψ

∂u
(u)

)

+ σ · ξ , (4)

where

〈ξ(t, x)〉 = 0 , 〈ξ(t1, x1)ξ(t2, x2)〉 = δ(t1 − t2)q(x1 − x2) .

Here σ > 0 is a measure for the intensity of the fluctuation and q describes the spatial

correlation of the noise. In other words, the noise is uncorrelated in time. For the special

case q = δ we obtain space-time white noise, but in general the noise will exhibit spatial

correlations. See also [19].

Both the deterministic and the stochastic model produce patterns which are qualitatively

similar to the microstructures observed during spinodal decomposition [4]. Recent mathe-

matical results for (3) and (4) have identified the observed microstructures as certain random

superpositions of eigenfunctions of the Laplacian, and were able to explain the dynamics of

the decomposition process in more detail [2, 23, 24, 28, 29, 32].

Even though both models are based on deep physical insight, they are phenomenological

models. Many researchers have therefore studied how well the models agree with experi-

mental observations. See for exampe [1, 11, 14, 25], as well as the references therein. Most

of these studies have been restricted to testing scaling laws. Exceptions include for example

Ujihara and Osamura [31], who perform a quantitative evaluation of the kinetics by ana-

lyzing the temporal evolution of the scattering intensity of small angle neuron scattering

in Fe-Cr alloys. Another approch was pursued by Hyde et al. [15], who consider spinodal

decomposition in Fe-Cr alloys. Using experimental data obtained by an atom probe field ion

microscopy PoSAP analysis, they study whether the observed microstructures are topologi-

cally equivalent to the structures generated by several model equations.
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Two structures are considered topologically equivalent, if one can be deformed into the

other without cutting or gluing. While it is difficult in general to determine when two struc-

tures are equivalent, one can easily obtain a measure for the degree of similarity by studying

topological invariants. These are objects (such as numbers, or other algebraic objects) as-

signed to each structure, which remain unchanged under deformations. In other words, if

these invariants differ for two structures, the structures cannot be topologically equivalent.

Yet, similarities between the invariants indicate similarities between the considered struc-

tures.

The topological invariant used in [15] is the number of handles in the microstructure

occupied by one of the two material phases. This number is computed using techniques

from digital topology [18]. These techniques are indirect in nature and compute the number

of handles by relating it to the Euler characteristic of the structure, which can be computed

easily in three space dimensions. As the authors point out, “designing a computer program

to directly count the handle density in a complex structure would be extremely difficult [15,

p. 3419].” Recent progress in computational homology has resulted in such a program [16,

17].

In the remainder of this paper, we illustrate how the software package CHomP [17] can

be used to quantify the pattern morphology generated by the deterministic Cahn-Hilliard

model (3) and the stochastic model (4). To simplify the presentation, we only consider

two-dimensional microstructures generated by spinodal decomposition, see again Figure 1.

Nevertheless, the presented software works in arbitrary dimensions. Aside from the study

of 3D microstructures, this also allows for the analysis of spatio-temporal structure changes,

by including time as a fourth dimension. This method has been used in [10] to detect

spatio-temporal chaos.
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2 Numerical Solution of the Stochastic Model

We begin with a brief description of the numerical method used for approximating the Cahn-

Hilliard-Cook equation (4). In order to simplify the presentation, we only discuss the case of

a one-dimensional base domain Ω = (0, 1). The higher-dimensional situation can be treated

analogously.

The deterministic part of the evolution equation (4) is approximated using a finite dif-

ference scheme with linearly implicit time-stepping. To this end, we choose a time step ∆t

and a spatial grid size N , and let ∆x = 1/N . For any k ∈ N we let tk = k · ∆t and ap-

proximate the solution u(tk, ·) of (4) by the N -vector U(tk) = (U1(tk), . . . , UN(tk)), where

Un(tk) ≈ u(tk, xn) with xn = 1/(2N) + (n − 1)/N for n = 1, . . . , N . The second deriva-

tive with respect to x is approximated using standard divided differences, i.e., the values

of uxx(t, ·) are approximated by LU(t), where L denotes the appropriate tridiagonal matrix.

With this notation the numerical method for (4) can be written as

U(tk+1) − U(tk)

∆t
= − ε2

∆x4
· L2U(tk+1) −

1

∆x2
· Lf(U(tk)) + σ · ξ(tk) ,

which is equivalent to the linear system

(

I +
ε2∆t

∆x4
L2

)

U(tk+1) = U(tk) −
∆t

∆x2
· Lf(U(tk)) + σ · ∆t · ξ(tk) . (5)

The numerical approximation of the noise term will be specified below. This scheme is a

variation of linearly implicit schemes, as discussed for example in [12, 26]. In contrast to the

methods described in these references, we only split off the bi-Laplacian part of the right-

hand side. This ensures the invertibility of the matrix (I + (ε2∆t/∆x4) · L2), regardless of

the step size ∆t. At the same time, we can still choose considerably larger step sizes than in
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the explicit case. See in particular Quarteroni and Valli [26, Section 12.2.2], where a method

analogous to ours is analyzed.

We now turn our attention to the approximation of the noise term. The stochastic forcing

term ξ in (4) is given as the generalized derivative of an infinite-dimensional Wiener process

W (t), t ≥ 0, which can be written as

W (t) =
∞

∑

`=1

α` · β`(t) · ϕ` . (6)

In this series representation, the stochastic processes β` denote independent real-valued

Brownian motions, and the functions ϕ`, ` ≥ 0, are the eigenfunctions of the Laplacian

on Ω subject to homogeneous Neumann boundary conditions. Notice that the sum in (6)

excludes the constant eigenfunction ϕ0. This is necessary to ensure that the stochastic

Cahn-Hilliard equation remains mass conserving. The noise process ξ = ∂tW then satisfies

∆t · ξ(tk) ≈ W (tk+1) − W (tk) =

∞
∑

`=1

α` · (β`(tk+1) − β`(tk)) · ϕ` . (7)

The definition of Brownian motion implies that the random variable β`(tk+1) − β`(tk) is

normally distributed with mean 0 and variance tk+1−tk = ∆t. Therefore, the scaled random

variable (β`(tk+1) − β`(tk))/
√

∆t is normally distributed with mean 0 and variance 1. As

in [30], the series in (7) is approximated by its projection onto the span of the first N − 1

eigenfunctions ϕ1, . . . , ϕN−1. Altogether, we approximate the noise term ξ by

∆t · ξ(tk) ≈
N−1
∑

`=1

α` · (β`(tk+1) − β`(tk)) · ϕ` =
√

∆t ·
N−1
∑

`=1

α` · B` · ϕ` , (8)

where the B` denote independent normally distributed random variables with mean 0 and

standard deviation 1. Equations (5) and (8) constitute our numerical approximation of the
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evolution equation (4).

The above numerical scheme can be implemented efficiently using the fast Fourier trans-

form. One can show that the eigenvectors of the tridiagonal matrix L can be obtained by

evaluating the above-defined eigenfunctions ϕ` at each entry of the vector x = (x1, . . . , xN ).

The time-consuming part in the algorithm is the solution of a linear system of the form

AU = V at every timestep, where A = I + (ε2∆t/∆x4) · L2. Thus, by transforming the

vector V into Fourier space using the discrete cosine transform, dividing component-wise

by the eigenvalues of A, and then applying the inverse discrete cosine transform, the linear

system AU = V can be solved in time O(N log N). Notice that the noise approximation

can easily be added to this scheme, before applying the inverse cosine transform. This is the

reason for choosing the upper limit of the sum (8) as N − 1, instead of N .

The above description can easily be generalized to the two-dimensional situation. The

simulations in this paper used an implementation in C in combination with the fast Fourier

transform package FFTW [9]. Moreover, we consider the case of cut-off noise, i.e., in (6)

we choose α` = 1 for ` = 1, . . . , N − 1, and α` = 0 for ` ≥ N . This guarantees a spatial

correlation function q which closely approximates δ.

3 Homology

As is indicated in the introduction we claim that homology provides a useful technique for

identifying and distinguishing the evolving microstructures of (3) and (4). While this paper

is clearly not the appropriate forum for an in depth description of algebraic topology and

homology three points do need to be discussed: (1) what structures do we want to understand

the geometry of, (2) what geometric features does homology measure, and (3) how is the

homology being computed?
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Since we are interested in phase separation and u(t, x) represents the relative concentra-

tion difference between the two materials at time t and location x, the simplest decomposition

of the domain consists of the two sets

X+(t) := {x ∈ Ω | u(t, x) > m} and X−(t) := {x ∈ Ω | u(t, x) < m} , (9)

where m denotes a suitable threshold value, such as the total mass. In this situation, the

sets X±(t) represent the regions in the material where one or the other element dominates.

Of course, u is the solution of a (stochastic) nonlinear partial differential equation and hence

we cannot expect to have an explicit representation of the sets X±. As was indicated in

Section 2 we use a finite difference scheme to numerically solve (3) and (4) and thus given

the domain Ω = (0, 1) × (0, 1) with a spatial grid size N × N we obtain values U(tk, x
1
` , x

2
n)

where xj = 1/(2N) + (j − 1)/N . We give a geometric interpretation to this numerical grid

via the squares Q`,n := [(`−1)/N, `/N ]× [(n−1)/N, n/N ]. In particular we define a cubical

approximation to X±(t) by

U+(tk) :=
{

Q`,n | U(tk, x
1
` , x

2
n) > m

}

and U+(tk) :=
{

Q`,n | U(tk, x
1
` , x

2
n) < m

}

Figure 1 indicates sets U±(tk) at various times steps for a particular solution to (3) and (4).

It is easy to observe that patterns produced by U±(tk) are complicated, time dependent, and

appear at intermediate time steps to differ qualitatively for the deterministic and stochastic

models. Before moving on to describe how homology can be used to quantify these obser-

vations, notice that if the computations had been performed in a three-dimensional domain,

then the same approach could be used except that the 2-dimensional squares Q`,n would be

replace by 3-dimensional cubes.

This leads us to the question of what geometric properties homology can measure. We
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begin with the fact that for any topological space X there exist homology groups Hi(X),

i = 0, 1, 2, . . . (see [16] and the references therein). For a general space Hi(X) takes the form

of an arbitrary abelian group. However, in the context of our investigations there are two

simplifying conditions. The first is that from the point of view of materials science we are

only interested in structures that can occur in 3-dimensional Euclidean space. The second is

that the spaces we compute the homology of are represented in terms of a finite number of

cubes (squares if we restrict our attention to a 2-dimensional model as is being done in this

paper). In this setting the homology groups are much simpler; first, Hi(X) = 0 for i ≥ 3

and second, for i = 0, 1, 2,

Hi(X) ∼= Z
βi

where Z denotes the integers and βi is a non-negative integer called the i-th Betti number.

Thus, for our purposes the homology groups are characterized by their Betti numbers.

Each of the homology groups measures a different geometric property. H0(X) counts the

number of connected components (pieces) of the space X. More precisely, if β0 = k, then X

has exactly k components. A specific example of this is shown in the left diagram in Figure 2,

where β0 = 26 corresponding to the 26 different connected components. Observe that the

size or the shape of the components does not play a role in the value of β0. Depending on the

application this can be taken as a strength or weakness of this approach. For the problems

being discussed in this paper we see it as a strength, since we have no a priori knowledge of

the specific geometry of the material microstructures.

H1(X), or more precisely β1, provides a measure of the number of tunnels in the structure,

though the correspondence is slightly more complicated. In a two-dimensional domain, such

as that indicated in Figure 2, tunnels are reduced to loops. In particular, as is shown in the

right diagram of Figure 2, the green structure encloses exactly four regions indicated by the
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black curves and hence β1 = 4. Notice that each of the remaining white regions hits the

boundary. As before, size or shape plays no role in the definition of a loop.

For a three-dimensional structure loops become tunnels, where again the length or width

of the tunnel is irrelevant. For example a washer has one wide but very short tunnel while

a garden hose has a narrow but long tunnel. In either case β1 = 1.

As mentioned earlier we are only considering a two-dimensional domain in which case

H2(X) = 0. However, for a general three-dimensional domain β2 equals the number of

enclosed volumes or cavities within the material.

We finish this section with a brief comment concerning the actual computation of the

Betti numbers. As is indicated in the introduction this is done using the code CHomP [17].

An elementary introduction to homology and the underlying algorithms can be found in [16].

Typical computation times of the software in our situation are described in the next section.

4 Effects of Noise on the Pattern Morphology

In this section we use computational homology to study the effects of the stochastic forcing

term in (4) on the temporal evolution of the pattern complexity. We consider the case of

total mass m = 0 and Ψ as in (2), and restrict ourselves to γ1/2 = 0.005. The simulations

are performed on the unit square Ω = (0, 1) × (0, 1). For varying values of the noise inten-

sity σ, we numerically integrate the Cahn-Hilliard-Cook equation (4) starting from a random

perturbation of the homogeneous state m = 0 with amplitude 0.0001 up to time

tend =
160γ

Ψ′′(m)2
, where Ψ′′(m) = 3m2 − 1 , (10)

which in our situation reduces to tend = 0.004. This time frame covers the complete spinodal

decomposition phase, as well as early coarsening. The domain is discretized by a 512× 512-

10



grid, the time interval [0, tend] is covered by 10, 000 integration steps. Every 50 time steps,

the sets X±(t) introduced in the last section are determined, and finally their Betti numbers

are computed using [17]. On a 2 GHz Dual Xeon Linux PC it took about 15 minutes to

create the 402 sets X±(t) for t/tend = 0, 0.005, 0.010, . . . , 0.995, 1, as well as a total of 46

minutes to compute their Betti Numbers.

Figure 3 contains the results of these computations for two different values of the noise

intensity. The solid red curves show the Betti number evolution for the deterministic

case σ = 0, the dashed blue curves are for noise intensity σ = 0.01; the solution snapshots in

Figure 1 are taken from these two simulations. At first glance, the graphs in Figure 3 are not

surprising. For the initial time t = 0 both β0 and β1 are large, since the initial perturbation

was chosen randomly on the computational grid. In fact, the actual values lie well outside the

displayed range. The smoothing effect of (4) leads to a rapid decrease of the Betti numbers

for times t close to 0, and coarsening behavior in the Cahn-Hilliard-Cook model is responsible

for the decrease observed towards the end of the time window. All shown evolutions exhibit

small-scale fluctuations, which are most likely artifacts caused by the cubical approximation

of the sets X±(t). Even though these fluctuations are not necessarily desirable, they are a

more or less automatic consequence of the numerical approximation of the partial differential

equation (4).

Despite these similarities, there are some obvious differences between the deterministic

and the stochastic evolution. In the deterministic situation, the initial complexity decay

occurs sooner than in the stochastic case. In addition, it appears that the Betti numbers

of X+(t) for σ = 0.01 decay more or less monotonically, provided we ignore the above-

mentioned small-scale fluctuations. In contrast, in the deterministic case the initial decrease

seems to be followed by a period of stagnation or even growth of the Betti numbers, see for

example β0 for X+(t) or β1 for X−(t).
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The observations made in the last paragraph could indicate fundamental differences be-

tween the deterministic and the stochastic Cahn-Hilliard model. However, these observations

are based on a single randomly chosen initial condition, and it is therefore far from clear

whether they represent behavior typical for either of the models. For this we have to observe

ensembles of solutions for each of the models and study the statistics of their complex-

ity evolutions. For the purposes of this paper, we concentrate on the averaged complexity

evolution. Figure 4 shows the averaged Betti number evolution for six values of the noise

intensity σ ranging from 0 to 0.01, in each case based on solution ensembles of size 100. The

qualitative form of the complexity evolution curves differs substantially. For large noise the

complexity decays monotonically, while it shows a surprising increase in the deterministic

situation. The change between the two behaviors occurs gradually, and there seems to be

a specific threshold σcr for the noise intensity beyond which monotone decay is observed.

Notice also that despite the small ensemble size, the evolution curves of X+(t) and X−(t)

are in good agreement, which for our choice of m = 0 and Ψ as in (2) has to be expected.

In this sense, the ensemble behavior is a reflection of typical solution dynamics, reinforcing

our above observations.

The simulations discussed so far consider the specific value γ1/2 = 0.005. We performed

analogous simulations for various values of γ, for various grid sizes, and a variety of time

steps. In each case, the time window extended from 0 to tend as defined in (10). These

results show that the behavior shown in Figure 4 is typical. In all cases, the time window

covers the complete spinodal decomposition phase, as well as early coarsening; the resulting

evolution curves for the deterministic case show the characteristic non-monotone behavior;

for sufficiently large noise intensity we observe monotone decay. The only parameters chang-

ing with γ appear to be the absolute height of the evolution curves and the critical noise

intensity σcr. While the height scaling will be addressed in more detail in the next section,

12



we close this section with a brief discussion of the dependence of σcr on γ.

To get a more accurate picture of the monotonicity properties of the evolution curves we

compute the averaged Betti number evolution from larger solution ensembles and for times

up to only tend/4. As before, tend is given by (10), and we consider the case m = 0. The

noise intensity σ is chosen equal to γ1/2, and the ensemble size is taken as 1, 000. The results

of these simulations for γ1/2 = 0.005, 0.006, and 0.007 are shown in Figure 5. They indicate

that the critical noise intensity σcr at which the monotonicity behavior of the evolution

curves changes is given by

σcr ≈ γ1/2 . (11)

While we conjecture that (11) describes the correct scaling, verifying this conjecture is only

possible by significantly increasing the computational effort. For larger values of ε one has

to choose significantly larger ensemble sizes, due to the smallness of the Betti numbers. On

the other hand, for smaller values of ε the spatial grid has to be refined considerably.

The results of this section demonstrate that Betti numbers can be used to quantitatively

distinguish between microstructure morphologies generated by different models. Ultimately

we hope that this quantitative information can be used to match models to actual experi-

mental data. In fact, the limited experimental data in [15] seems to indicate that the handle

density of the microstructures generated through spinodal decomposition decreases mono-

tonically. Thus, these experimental results favor the stochastic Cahn-Hilliard-Cook model

with squared noise intensities σ2 larger than the interaction parameter γ.

5 Morphology Changes due to Mass Variation

So far we restricted our study to the case of equal mass, i.e., we assumed m = 0. Yet, spinodal

decomposition can be observed as long as Ψ′′(m) < 0, which for our choice of Ψ is equivalent
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to |m| < 3−1/2 ≈ 0.577. Total mass values outside this range lead to nucleation and growth

behavior which produces microstructures consisting of isolated droplets — in contrast to

the microstructures shown in Figure 1. In this section we use computational homology to

quantify the pattern morphology changes during spinodal decomposition in the deterministic

Cahn-Hilliard model (3) as the total mass is increased from m = 0 towards m ≈ 3−1/2.

Before presenting our numerical results, we have to address one technical issue. Even

though the homogeneous state m is unstable as long as Ψ′′(m) < 0, the strength of the

instability changes with m. One can easily show that the growth rate of the most unstable

perturbation of the homogeneous state is close to Ψ′′(m)2/(4γ) [23]. Thus, as the total mass

approaches the boundary of the spinodal region, the time frame for spinodal decomposition

grows. In order to compare the pattern morphology for different values of the total mass we

therefore scale the considered time window. As in the last section, we compute the solutions

up to time tend defined in (10), whose scaling is motivated by largest growth rate mentioned

above.

How do changes in the total mass m affect the microstructures generated through spinodal

decomposition? Figure 6 contains typical patterns for m = 0, 0.1, . . . , 0.5. In each case,

the pattern was generated by solving (3) up to time t = 0.4 · tend, with tend as in (10).

Notice that even though all of these microstructures are a consequence of phase separation

through spinodal decomposition, the last two microstructures resemble the ones generated by

nucleation and growth. In other words, Figure 6 indicates a gradual change from the highly

interconnected structures observed in the equal mass case to the disconnected structures

observed in nucleation.

In order to further quantify this gradual change, we use computational homology as in

the last section. For γ1/2 = 0.005 and various values of m between 0 and 0.55 we computed

the averaged Betti number evolution of the sets X±(t) in (9) from t = 0 up to time t = tend.
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The resulting two-dimensional surfaces are shown in Figure 7. To avoid the large Betti

numbers close to the random initial state, these graphs do not include the times t = 0

and t = 0.005 · tend. Of particular interest is the topology of the sets X+(t) which correspond

to the dominant phase. The graphs in the left column of Figure 7 show that in terms of

the quantitative topological information given by the averaged Betti numbers, one observes

a gradual and continuous change from the interconnected microstructures for m = 0 to the

nucleation morphology. In addition, the graph of β0 for X+(t) indicates that for t/tend > 0.25,

i.e., after the completion of spinodal decomposition, and for m > 0.2 the dominant phase

forms a connected structure; that is, the complementary phase breaks up completely. Yet,

the typical droplet structure reminiscent of nucleation and growth behavior can only be

observed for values of the total mass larger than 0.3. In the surfaces of Figure 7 this is

reflected by the fact that for fixed time t, the Betti number β1 of the dominant phase X+(t)

continues to increase with m until m ≈ 0.3. As the total mass approaches 3−1/2, the first

Betti number then decreases again, corresponding to an increasing droplet size.

Additional information can be obtained by combining the topological information

for X+(t) with the information for the complementary sets X−(t). To illustrate this, con-

sider again the microstructure in the left diagram of Figure 2 consisting of 26 components.

Most of these components are introduced through boundary effects — only 6 components are

internal. Even though the Betti number β0 of X+(t) does not distinguish between these two

types of components, only internal components of X+(t) introduce loops in X−(t). In other

words, the first Betti number of X−(t) is a measure for the number of internal components

of X+(t). Returning to Figure 7, this reasoning implies that internal components of X+(t)

disappear at much smaller values of the total mass m than the value m ≈ 0.2 stated above.

In fact, for m = 0, 0.025, 0.050, 0.075, and 0.1 the average first Betti number of X−(tend) is

given by 4.52, 2.16, 0.83, 0.32, and 0.07, respectively. For larger values of m it essentially
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vanishes.

In addition to the results shown in Figure 7, we performed analogous simulations

for γ1/2 = 0.0025, 0.0075, and 0.0100. In each case, the qualitative shape of the com-

puted surfaces matched the one for γ1/2 = 0.005, only the absolute height of the surfaces

changed. In fact, our computations indicate that the units on the vertical axes of Figure 7

scale proportionally to γ−1 for these values of γ.

The computations of this section indicate how homology can be used to quantify global

morphological changes, such as connectivity, due to mass variation. They also indicate

that by comparing different homological data, i.e., β0 and β1, inferences concerning the local

structure of the material can be made. On a more general level, given a model of a particular

material it would be interesting to seek correlations between macroscopic properties and the

type of geometric information expressed in Figure 7. Comparisons of this nature would

probably be of even greater importance in the case of three-dimensional simulations, since

visualization of these phenomena would be extremely complicated.

6 Conclusion

In this paper we proposed the use of computational homology as an effective tool for quanti-

fying and distinguishing complicated microstructures. Rather than discussing experimental

data, we considered numerical simulations of the deterministic Cahn-Hilliard model, as well

as its stochastic extension due to Cook. The obtained topological characterizations were

used to (a) uncover significant differences in the temporal evolution of the pattern complex-

ity during spinodal decomposition between the deterministic and the stochastic model, as

well as to (b) establish the existence of a gradual transition of the spinodal decomposition

microstructure morphology as the total mass approaches the boundary of the spinodal re-
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gion. In order to simplify our presentation, the results were presented in a two-dimensional

setting. Nevertheless, the computational tools are available for and effective in arbitrary

dimensions.

We believe that the presented methods can serve as practical tools for assessing the

quality of continuum models for phase separation processes in materials. This is achieved

by providing quantitative topological information which can readily uncover differences in

models as in (a). In addition, this quantitative information can be used to compare the

computed microstructure topology to experimental observations. For example, the study

in [15] determined the handle density of spinodally decomposing iron-chromium alloys. This

quantity corresponds to the first Betti number, and the results of [15] indicate a monotone

decay — which in combination with (a) favors the stochastic Cahn-Hilliard-Cook model over

the deterministic one.

A second possible application is the identification of model parameters based on the

microstructure topology. For example, our considerations in (b) resulted in characteristic

evolution curves as a function of the parameter m, as well as in scaling information with

respect to γ. Combined, these graphs could be used to determine specific values of these

parameters for certain experimental situations.

It would be interesting to apply the methods presented in this paper to more elaborate

models which include additional effects, such as for example anisotropic elastic forces [22] or

polycrystalline structures [27]. Moreover, we believe that combining our methods with the

matricity concept introduced in [20, 21] can further increase the classification potential of

the method.
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t = 0.0004 t = 0.0012 t = 0.0036

σ = 0.01

σ = 0

Figure 1: Microstructures obtained from the Cahn-Hilliard-Cook model (4). The top row
shows solution snapshots for the deterministic case σ = 0, the bottom row is for noise
intensity σ = 0.01. In both cases we used γ1/2 = 0.005 and m = 0. The set X+(t) defined
in (9) is shown in dark blue.

Figure 2: Betti numbers for the darker region of the σ = 0 and t = 0.0036 snapshot from
Figure 1. The left diagram shows the β0 = 26 components in different colors, the right
diagram indicates the location of the β1 = 4 loops.
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Figure 3: Evolution of the Betti numbers for the solutions of Figure 1. In each diagram, the
solid red curve corresponds to σ = 0, the dashed blue curve is for σ = 0.01. In both cases we
used γ1/2 = 0.005 and m = 0. The diagrams in the left column show the results for X+(t),
the right column is for X−(t). The top row contains the evolutions of β0, the bottom row
shows β1.
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Figure 4: Evolution of Betti number averages for a sample size of 100, with γ1/2 = 0.005
and m = 0. In the top row at dimension level 60 the curves correspond to the values σ = 0.1,
0.03, 0.01, 0.003, 0.001, and 0, from left to right; analogously in the bottom row at level 25.
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Figure 5: Evolution of Betti number averages for varying γ1/2 = σ and m = 0. The blue
(top), green (middle), and red (bottom) curves correspond to γ1/2 = σ = 0.005, 0.006,
and 0.007, respectively. The sample size for each of these simulations is 1, 000.
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Figure 6: Microstructures obtained from the Cahn-Hilliard model (3) for γ1/2 = 0.005 for
varying m. From top left to bottom right solution snapshots are shown for total mass
m = 0, 0.1, . . . , 0.5 at time t = 0.4 · tend, i.e., shortly after completion of the spinodal
decomposition phase. The set X+(t) is shown in dark blue.
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Figure 7: Evolution of Betti number averages for a sample size of 100, with γ1/2 = 0.005
and varying mass m. The left column corresponds to X+(t), the right one to X−(t); the top
row contains the graphs for the 0-th Betti number, the bottom row for the first.
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