Vector Bundles and Projective Modules

Mariano Echeverria

Serre-Swan Correspondence

Serre-Swan Correspondence

If X is a compact Hausdorff space the category of complex vector bundles over X is equivalent to the category of finitely generated projective $C(X)$-modules.

$$
\begin{gather*}
\qquad\{\text { vector bundles over } X\} \\
\{\text { finitely generated projective } C(X)-\text { modules }\} \tag{1}
\end{gather*}
$$

The functor which establishes the equivalence will be called the cross section functor Γ.

Remark

The Serre-Swan Correspondence will allows us to define a noncommutative version of a vector bundle!

In A Nutshell...

trivial vector bundles $X \times \mathbb{C}^{n} \longleftrightarrow$ free $C(X)$ - module $[C(X)]^{n}$
(2)

- Over a compact Hausdorff space every vector bundle E can be trivialized, i.e, there exists E^{\prime} such that

$$
\begin{equation*}
E \oplus E^{\prime} \simeq \text { trivial } \tag{3}
\end{equation*}
$$

- A projective module P is one which can be trivialized in the sense that there exists P^{\prime} such that

$$
\begin{equation*}
P \oplus P^{\prime} \simeq \text { free } \tag{4}
\end{equation*}
$$

Category of Vector Bundles

- Objects: vector bundles E over X, i.e, E is a topological space with a map $p: E \longrightarrow X$ such that $p^{-1}(x)$ has the structure of a vector space and which is locally trivial, for each $x \in X$ there exists a neighborhood U_{x} of x such that $p^{-1}\left(U_{x}\right)$ is homeomorphic to the product bundle $U_{x} \times \mathbb{C}^{n}$.
- Arrows: given vector bundles E, E^{\prime} over X, a morphism is a map $f: E \longrightarrow E^{\prime}$ such that it is fiber wise linear and the following diagram commutes

i.e, $f\left(E_{x}\right) \subseteq E_{x}^{\prime}$.

Category of Finitely Generated Projective Modules

- Objects: finitely generated projective $C(X)$ modules, i.e, P is a module over $C(X)$ for which there exists a $C(X)$ module Q such that $P \oplus Q$ is a free $C(X)$ module of finite rank.
- Arrows: if P, P^{\prime} are finitely generated projective $C(X)$ modules, an arrow $f: P \longrightarrow P^{\prime}$ is simply a $C(X)$ module homomorphism

Equivalence of Categories

We will construct a "map" (functor) Γ such that
(1) If E is a vector bundle over X, then Г E is a finitely generated projective $C(X)$ module.
(2) If $f: E \longrightarrow E^{\prime}$ is a morphism between vector modules, then $\Gamma f: \Gamma E \longrightarrow \Gamma E^{\prime}$ is a module homomorphism
(3) The application $f \longrightarrow \Gamma f$ is injective
(4) For every $g: \Gamma E \longrightarrow \Gamma E^{\prime}$ there exists $f: E \longrightarrow E^{\prime}$ such that $g=\Gamma f$ (surjectivity)
(5) For every finitely generated projective module P there exists a vector bundle E such that ΓE and P are isomorphic

The Cross Section Functor Γ

- Given a vector bundle over E, we define Г E to be the global cross-sections of E

$$
\begin{equation*}
\left\ulcorner E \equiv\left\{s: X \longrightarrow E \quad p \circ s=1_{X}\right\}\right. \tag{6}
\end{equation*}
$$

Clearly Г E is a $C(X)$ module by

$$
\left\{\begin{array}{l}
(h \cdot s)(x)=h(x) s(x) \tag{7}\\
\left(s_{1}+s_{2}\right)(x)=s_{1}(x)+s_{2}(x)
\end{array}\right.
$$

where $h: X \longrightarrow \mathbb{C}$.

- Need to show that Г E is a finitely generated projective module

ΓE is a finitely generated projective module

We will prove the following:
(1) We can take $Q=\Gamma\left(E^{\prime}\right)$ where $E \oplus E^{\prime}$ is a trivial vector bundle. $E \oplus E^{\prime}$ is the Whitney sum:

$$
\begin{equation*}
E \oplus E^{\prime}=\left\{\left(e, e^{\prime}\right): e \in E, e^{\prime} \in E^{\prime}, \quad p(e)=p^{\prime}\left(e^{\prime}\right)\right\} \tag{8}
\end{equation*}
$$

(2) We can see

$$
\begin{equation*}
\Gamma(E) \oplus \Gamma\left(E^{\prime}\right) \simeq \Gamma\left(E \oplus E^{\prime}\right) \simeq \Gamma\left(X \times \mathbb{C}^{N}\right) \simeq(C(X))^{N} \tag{9}
\end{equation*}
$$

where if $s^{\prime \prime} \in \Gamma\left(E \oplus E^{\prime}\right)$ we define $s=p \circ s^{\prime \prime} \in \Gamma(E)$ and $s^{\prime}=p^{\prime} \circ s^{\prime \prime} \in \Gamma\left(E^{\prime}\right)$. This will show that ΓE is finitely generated projective module.

Trivialization Property

- We can find open sets U_{1}, \cdots, U_{m} and V_{1}, \cdots, V_{m} where E is trivial on each $V_{i}, U_{i} \subseteq V_{i}$ and there exists $\xi_{i}: X \longrightarrow[0,1]$ with $\operatorname{supp} \xi_{i} \subseteq V_{i}, \xi_{i}=1$ on U_{i} and the U_{i} are an open cover for X.
- We have $\varphi_{i}: p^{-1}\left(V_{i}\right) \longrightarrow\left(V_{i}, \mathbb{C}^{n}\right)$ and can write $\varphi_{i}(v)=(p(v), \psi(v))$ where $\psi_{i}: p^{-1}\left(V_{i}\right) \longrightarrow \mathbb{C}^{n}$.
- Define $\Psi: E \longrightarrow\left(\mathbb{C}^{n}\right)^{m}$ and $\Phi: E \longrightarrow X \times\left(\mathbb{C}^{n}\right)^{m}$ by

$$
\begin{gather*}
\Psi(v)=\left(\xi_{i}(p(v)) \psi_{i}(v)\right)_{1 \leq i \leq m} \tag{10}\\
\Phi(v)=(p(x), \Psi(v))
\end{gather*}
$$

Since $\Psi_{\mid E_{X}}$ is a linear monomorphism for each x we can identify E with $\Phi(E)$ which is a subbundle of the trivial bundle $X \times\left(\mathbb{C}^{n}\right)^{m}$.

Definition of Γf

- Suppose that $f: E \longrightarrow E^{\prime}$ is a vector bundle morphism.
- Define $\Gamma f: \Gamma E \longrightarrow \Gamma E^{\prime}$ by

$$
\begin{equation*}
(\Gamma f)(s)(x)=(f \circ s)(x) \tag{11}
\end{equation*}
$$

where $s: X \longrightarrow E$ is a section of E. Observe that $(\Gamma f)(s)$ is a section because

$$
\begin{equation*}
p^{\prime} \circ(\Gamma f(s))=p^{\prime} \circ(f \circ s)=\left(p^{\prime} \circ f\right) \circ s=p \circ s=1_{X} \tag{12}
\end{equation*}
$$

- It is a $C(X)$ module homomorphism because of the fiber wise linearity of f

$$
\begin{gather*}
(\Gamma f)\left(h \cdot s+s^{\prime}\right)(x)=\left(f \circ\left(h \cdot s+s^{\prime}\right)\right)(x)=f\left(h(x) s(x)+s^{\prime}(x)\right) \\
=(\Gamma f)(h \cdot s)(x)+(\Gamma f)\left(s^{\prime}\right)(x) \tag{13}
\end{gather*}
$$

Injectivity of $f \longrightarrow \Gamma f$

- Suppose that $\Gamma f=\Gamma g$ for $f, g: E \longrightarrow E^{\prime}$ morphisms.
- If $e \in E$ let $x=p(e)$. If we take U_{x} a trivializing open neighborhood for x then there exists a local section $s_{U_{x}}: U_{x} \longrightarrow E$ such that $s_{U_{x}}(x)=e$. By Urysohn's Lemma we can find $\varphi: X \longrightarrow[0,1]$ such that $\varphi(x)=1$ and $\operatorname{supp} \varphi \subseteq U_{x}$. Then $\varphi \cdot s_{U_{x}}: X \longrightarrow E$ is a global section, therefore

$$
\begin{gather*}
f(e)=f\left(\varphi \cdot s_{U_{x}}(x)\right)=(\Gamma f)\left(\varphi \cdot s_{U_{x}}\right)(x) \tag{14}\\
=(\Gamma g)\left(\varphi \cdot s_{U_{x}}\right)(x)=g\left(\varphi \cdot s_{U_{x}}(x)\right)=g(e)
\end{gather*}
$$

which shows that $f=g$.

Surjectivity of Γ

- Suppose that $g: \Gamma(E) \longrightarrow \Gamma\left(E^{\prime}\right)$ is a $C(X)$ homomorphism.
- We want $f: E \longrightarrow E^{\prime}$ such that $\Gamma f=g$. We will define it fiberwise because if $e \in E$ then e belongs to some fiber.
- For $x \in X$ consider the evaluation maps

$$
\begin{array}{ll}
\varepsilon_{x}: C(X) \longrightarrow \mathbb{C} & h \longrightarrow h(x) \\
\varepsilon_{x}^{E}: \Gamma(E) \longrightarrow E_{x} & s \longrightarrow s(x) \tag{15}
\end{array}
$$

- We will show that

$$
\begin{equation*}
\left(\operatorname{ker} \varepsilon_{x}\right) \Gamma(E)=\operatorname{ker} \varepsilon_{x}^{E} \tag{16}
\end{equation*}
$$

- The inclusion \subseteq is obvious

Kernel of ε_{x}^{E}

- For \supseteq suppose that $\varepsilon_{x}^{E}(s)=0$. Then taking a trivialization U_{x} for x we can find sections and write

$$
\begin{equation*}
s(x)=a_{1}(x) s_{1}(x)+\cdots+a_{n}(x) s_{n}(x) \tag{17}
\end{equation*}
$$

on U_{x}. We can take $a_{i} \in C(X)$. Then $\underbrace{s-a_{1} \cdot s_{1}-\cdots-a_{n} \cdot s_{n}}_{s^{\prime}}=0$ on U_{x} and by Urysohn's
Lemma we can take $\varphi_{x} \in C(X)$ such that $\varphi_{x} \cdot s^{\prime}=0$ on X. Hence

$$
\begin{equation*}
s^{\prime}=\varphi_{x} s^{\prime}+\left(1-\varphi_{x}\right) s^{\prime}=\left(1-\varphi_{x}\right) s^{\prime} \tag{18}
\end{equation*}
$$

where $\left(1-\varphi_{x}\right)(x)=0$. Therefore, $s^{\prime} \in\left(\operatorname{ker} \varepsilon_{x}\right) \Gamma(E)$ and because $a_{i}(x)=0$ since $s(x)=0$ it follows also that $s_{i} \in\left(\operatorname{ker} \varepsilon_{x}\right) \Gamma(E)$. We can write $s=s^{\prime}+\sum a_{i} s_{i}$ and therefore $s \in\left(\operatorname{ker} \varepsilon_{x}\right) \Gamma(E)$.

Definition of f

- Because g is a $C(X)$ homomorphism we have that

$$
\begin{equation*}
g\left(\operatorname{ker} \varepsilon_{x}^{E}\right)=g\left(\left(\operatorname{ker} \varepsilon_{x}\right) \Gamma(E)\right) \subseteq\left(\operatorname{ker} \varepsilon_{x}\right) \Gamma\left(E^{\prime}\right)=\operatorname{ker} \varepsilon_{x}^{E^{\prime}} \tag{19}
\end{equation*}
$$

- Therefore, if $e=s_{1}(x)=s_{2}(x)$ for two different sections then $s_{1}-s_{2} \in \operatorname{ker} \varepsilon_{x}^{E}$ and $g\left(s_{1}-s_{2}\right) \in \operatorname{ker} \varepsilon_{x}^{E^{\prime}}$ which implies that $g\left(s_{1}\right)(x)=g\left(s_{2}\right)(x)$ so we can define

$$
\begin{equation*}
f(e) \equiv(g s)(x) \tag{20}
\end{equation*}
$$

- The fiber-wise linearity and $p^{\prime} \circ f=p$ follow from the properties of g. We only need to check continuity but this is easy because continuity is a local property.

Essential Surjectivity

- Suppose that P is a finitely generated projective module. Then there exists Q such that $P \oplus Q=F$ is free
- Therefore,we can write

$$
\begin{equation*}
P \oplus Q \simeq \Gamma\left(X \times \mathbb{C}^{k}\right) \tag{21}
\end{equation*}
$$

where $X \times \mathbb{C}^{k}$ is a trivial vector bundle over X. For $s \in \Gamma\left(X \times \mathbb{C}^{k}\right)$ we can write

$$
\begin{equation*}
s=s_{P}+s_{Q} \tag{22}
\end{equation*}
$$

and define

$$
\begin{gather*}
g: \Gamma\left(X \times \mathbb{C}^{k}\right) \longrightarrow \Gamma\left(X \times \mathbb{C}^{k}\right) \tag{23}\\
s \longrightarrow s_{P}
\end{gather*}
$$

Essential Surjectivity

- By our surjectivity there exists $f: X \times \mathbb{C}^{k} \longrightarrow X \times \mathbb{C}^{k}$ such that

$$
\begin{equation*}
g=\Gamma f \tag{24}
\end{equation*}
$$

- Because Γ is a functor we have

$$
\begin{equation*}
\Gamma f^{2}=\Gamma f \circ \Gamma f=g^{2}=g=\Gamma f \tag{25}
\end{equation*}
$$

and by injectivity it follows that

$$
\begin{equation*}
f^{2}=f \tag{26}
\end{equation*}
$$

- Taking

$$
\begin{equation*}
E=\operatorname{imf} \tag{27}
\end{equation*}
$$

it can be verified that

$$
\begin{equation*}
\Gamma E \simeq P \tag{28}
\end{equation*}
$$

We have shown the Serre-Swan correspondence!

Hopf Line Bundle

- Consider the Pauli spin matrices

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \tag{29}\\
1 & 0
\end{array}\right) \quad \sigma_{2}=\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right) \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- Define $F: S^{2} \subseteq \mathbb{R}^{3} \longrightarrow M_{2}(\mathbb{C})$ by

$$
\begin{equation*}
F\left(x_{1}, x_{2}, x_{3}\right)=x_{1} \sigma_{1}+x_{2} \sigma_{2}+x_{3} \sigma_{3} \tag{30}
\end{equation*}
$$

- The following matrix is idempotent of rank 1

$$
e=\frac{1+F}{2}=\frac{1}{2}\left(\begin{array}{cc}
1+x_{3} & x_{1}+i x_{2} \tag{31}\\
x_{1}-i x_{2} & 1-x_{3}
\end{array}\right)
$$

- By the Serre -Swan correspondence it defines complex line bundle called the Hopf line bundle. It is associated to the Hopf Fibration

$$
\begin{equation*}
S^{1} \longrightarrow S^{3} \longrightarrow S^{2} \tag{32}
\end{equation*}
$$

Hopf Line Bundle on Quantum Sphere

- In the Serre-Swan correspondence, the modules were defined over the commutative ring $C(X)$.
- A non-commutative vector bundle is a finitely generated projective right module P for a non-necessarily commutative algebra \mathcal{A} !
- The Podles quantum sphere S_{q}^{2} is the $*$-algebra over \mathbb{C} generated by a, a^{*}, b subject to

$$
\begin{equation*}
a a^{*}+q^{-4} b^{2}=1 \quad a^{*} a+b^{2}=1 \quad a b=q^{-2} b a \quad a^{*} b=q^{2} b a^{*} \tag{33}
\end{equation*}
$$

- The quantum Hopf Bundle is noncommutative line bundle associated to the idempotent

$$
e_{q}=\frac{1}{2}\left(\begin{array}{cc}
1+q^{-2} b & q a \tag{34}\\
q^{-1} a^{*} & 1-b
\end{array}\right)
$$

Thank you!

Reference:
https://commons.wikimedia.org/wiki/File:Hopf
Fibration.png

