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The Dirac Equation

In special relativity we have the famous relationship

E =
q

p2

x + p2

y + p2

z +m2c4 (1)

In Quantum Mechanics one “quantizes” the previous
equation by turning, E , px , py , pz into differential
operators
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Dirac Operator in 1d

Goal: find an operator D such that

D2 = � d2

dx2



Dirac Operator in 1d

If you know complex numbers the previous problem is not too
difficult, just take

D = i
d

dx



Formal Self-Adjointness

Assume, that f , g 2 C1(R,C) have compact support; then
integration by parts says that

< Df , g >L2 =
´
R

⇣
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so the Dirac operator in 1d is formally self-adjoint!



Dirac Operator in 2d

Goal: find an operator D such that

D2 = � @2
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� @2
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Dirac Operator in 2d

Inspired in the 1d case, we use the following “ansatz”
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where a, b are some constants. Since

D2 =

✓
a
@

@x
+ b

@

@y

◆✓
a
@

@x
+ b

@

@y

◆
= a2 @2

@x2+(ab + ba)
@2

@x@y
+b2 @2

@y2

so we need 8
><

>:

a2 = �1
ab + ba = 0
b2 = �1

In particular, a and b must anticommute!



Dirac Operator in 2d

It is not hard to check that

a =
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0 i
i 0
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b =
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satisfy a2 = b2 = �Id and ab = �ba. Therefore, our Dirac
Operator D = a @
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The Cauchy Riemann Operator

We can rewrite the Dirac operator as

D = 2i

0
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Formal Self-Adjointness

If we write

D =
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using Green’s Theorem it can be checked that for f , g 2 C1(R2,C)

< Df , g >L2=< f , D̃g >L2

so that D̃ is the formal adjoint of D. So we can write

D =
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◆
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which proves again that the Dirac operator is formally self-adjoint!

Spoiler Alert: in even dimensions we will always have a decomposition

for the Dirac operator like previous one!



Dirac Operator in 3d

Just as we did for one and two dimensions, if we take
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The previous system of equations is satisfied by Hamilton’s
Quaternions, i.e, we can take
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Dirac Operator on Rn and Clifford Algebras

For Rn , the Dirac Operator (for the standard inner product)
will be

D = �
1

@

@x
1

+ �
2

@

@x
2

+ · · ·+ �n
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where the �i are the generators for the Clifford Algebra of Rn,
i.e, (
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i = �1
{�i , �j} = 0 if i 6= j



What About the Dirac Equation?

We were trying to find D such that
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The Dirac equation was used to predict the existence of
antiparticles!



What About Other Spaces?

What do we mean by the Laplacian on an arbitrary
manifold M? Does it always exist?

What do we mean by the Dirac Operator on an arbitrary
manifold M? Does it always exist?



Ingredient 1: Fourier Transform

Recall that for a sufficiently well behaved function u : R �! R
we can define its Fourier transform Fu : R �! R by

Fu(x) = û(p) =

ˆ
R
e�2⇡ipxu(x)dx

Modulo some constants, differentiation becomes multiplication
in that
dû

dp
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dp



Ingredient 2: Local Coordinates

On a general manifold M we don’t have global coordinates
(think of a sphere), however, we can use local coordinates
x
1

, · · · , xn to describe it. In particular, a linear differential
operator L of order m can be described locally as an operator

L : C1(M ;Rq) �! C1(M ;Rp)

given by
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Symbol of a Differential Operator

For our differential operator
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we define its (leading) symbol by replacing the partial
derivatives by “momenta”
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Example on M = R3

L : C1(M,R3) �! C1(M,R2)
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⇣
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Gradient on M = R3

r : C1(M ,R) �! C1(M ,R3)
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⇣
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Curl on M = R3

curl : C1(M,R3) �! C1(M,R3)
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⇣
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Divergence on M = R3

div : C1(M,R3) �! C1(M,R)
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Generalized Laplacian and Dirac Type Operator

Suppose that E is a vector bundle over a Riemannian manifold
M .

A Generalized Laplacian on E is a second order
differential operator 4 such that

�4(x ,p) = �kpk2

An Operator of Dirac Type on E is a first order
differential operator D such that

�D⇤D(x ,p) = �kpk2

i.e, the symbol of its “square” acts in the same way as the
symbol of a generalized Laplacian



An Old Friend

Recall that in R2 our Dirac operator was

D =
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1�p2
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so D is an operator of Dirac type.



Vector Operations on M = R3 and de Rham
Cohomology

0! C1
R3(R) r�! C1

R3(R3)
r⇥�! C1

R3(R) r·�! C1
R3(R)! 0

From vector calculus we know that
8
><

>:

r⇥ (r�) = 0 curl(grad)=0

r · (r⇥ E) = 0 div(curl)=0

therefore we can define a cohomology H⇤
DR(R3) !



Computing H0
DR(R3)

0! C1
R3(R) r�! C1

R3(R3)
r⇥�! C1

R3(R) r·�! C1
R3(R)! 0

H0

DR(R3) = kerr =
�
� : R3 �! R | r� ⌘ 0

 

Now, r� ⌘ 0 if and only if � is a constant scalar field. Since
there is a constant scalar field for each real number we have
that

H0

DR(R3) ' R



Computing H1
DR(R3)

0! C1
R3(R) r�! C1

R3(R3)
r⇥�! C1

R3(R) r·�! C1
R3(R)! 0

H1

DR(R3) =
ker(curl)

im (grad)
=
�
[E] | r⇥ E = 0 and E ⇠ E0

iff E0 = E +r�
 

From Advanced Calculus we know that every irrotational
vector field E is conservative, i.e, E = r� so E 2 [0] and
hence

H1

DR(R3) = 0



Computing H2
DR(R3)

0! C1
R3(R) r�! C1

R3(R3)
r⇥�! C1

R3(R) r·�! C1
R3(R)! 0

H2
DR(R3) =

ker(div)

im(curl)
= {[B] | r · B = 0 and B ⇠ B

0
iff B

0 = B +r⇥ A}

From Electromagnetism/Vector Calculus we know that every
solenoidal vector field B has a vector potential A, i.e,
B = r⇥ A so B 2 [0] and hence

H2

DR(R3) = 0



Computing H3
DR(R3)

0! C1
R3(R) r�! C1

R3(R3)
r⇥�! C1

R3(R) r·�! C1
R3(R)! 0

H3

DR(R3) = coker(div) =
�
[f ] | f : R3 �! R and f ⇠ g iff f = g +r · B

 

Since f (x , y , z) = r ·
�´ x

0

f (t, y , z)dt, 0, 0
�

we have f 2 [0] so

H3

DR(R3) = 0



Differential Equations and Topology: de Rham’s
Theorem

De Rham’s Theorem: the de Rham cohomology is isomorphic
to the cohomology of the manifold, i.e,

H⇤
DR(M) ' H⇤(M)

In particular we can compute the Euler characteristic of the
manifold as

�(M) =
dimMX

i=0

(�1)i dimH i
DR(M)

which means that the topology of the space restricts the
dimensions of the space of solutions of certain differential
equations (Laws of Physics) on our manifold!



The Hodge Laplacian

0 � C1
R3(R)
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We can define the Hodge Laplacians
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The Hodge Operator

We can combine them to define a Laplacian on

⌦⇤
M =

⇥
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R3(R)� C1
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⇤
�
⇥
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R3(R)� C1

R3(R3)
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Define the Hodge- Laplacian
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M �! ⌦⇤
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Does it have a Dirac operator?
Observe that

rank⌦⇤
M = 8 = 23 = 2dimM



The Hodge-Dirac Operator

0 � C1
R3(R)

r
�
�r·
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R3(R3)
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(
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Therefore we found a square root for the Laplacian!



“Index” Hodge-Dirac Operator on M = R3

We have that
kerD = {(f ,u) | r · u = 0 and rf = �r⇥ u}

kerD⇤ = {(g , v) | r · v = 0 and rg = r⇥ v}

and (f ,u) �! (�f ,u) gives a bijection between kerD and
kerD⇤ .

indexD ⌘ dim kerD � dim kerD⇤ ?
= 0

The previous calculation fails because kerD and kerD⇤ are
infinite dimensional! However, if we run the same argument on
a compact, oriented, Riemannian manifold it can be show that

indexD = �(M)

so an analytical quantity (the index) is determined by a
topological quantity (Euler Characteristic)!



Fixing the problem: Fredholm Operators

A bounded linear operator T : E �! F between Banach spaces is

called Fredholm if it has finite dimensional kernel and cokernel. We

can define its index by

indexT ⌘ dim kerT � dim cokerT

::::: If E , F are finite dimensional vector spaces then by the
rank-nullity theorem (dimE = dim kerT + dim imT ) the index
is independent of the operator since

indexT = dimE � dim F

::::: In infinite dimensions the index can depend on the
operator. For example, in l2 we have

shift

+(c0, c1, c2, · · · ) = (0, c0, c1, c2, · · · , ) ind

�
shift

+� = �1

shift

�(c0, c1, c2, · · · ) = (c1, c2, · · · , ) ind(shift

�) = +1



Fixing the problem: Elliptic Operators

An operator D is elliptic if

p 6= 0 �! �D(x ,p) is invertible

For example, the symbol for D(f ,u) = (r · u, rf +r⇥ u)
is

�D(x,p) =
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and since det�D(x,p) = �(p2

1

+ p2

2

+ p2

3

)2 we see that
whenever (p

1

, p
2

, p
3

) 6= (0, 0, 0) the matrix �D(x,p) is
invertible, i.e, D is an elliptic operator!



Some Non-Examples

:::: The “wave operator”
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has symbol

�⇤(x,p) = p2

0
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and it clearly vanishes on the “light cones”
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::::The “heat kernel operator”
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has symbol
�H(x,p) = �p2

1

� p2

2

� p2

3

and it clearly vanishes whenever p
1

= p
2

= p
3

= 0 and p
0

2 R.



Why do we care about Elliptic Operators on a
compact manifold?

1) The operators of Dirac type are always elliptic
2) Over a compact manifold M , being elliptic implies being
Fredholm
3) Fredholm operators are very stable under perturbations,
which suggests that the index of a Fredholm operator might
be computed via topological quantities



The Atiyah-Singer Theorem

indexD AS

= topological stuff!

where by “topological stuff” we mean certain characteristic
classes associated to the manifold and the vector bundle on
which the Dirac operator acts.



What I Left Out
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Thank you!
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