# A (Somewhat Brief) Introduction to Dirac Operators 

Mariano Echeverria

## Dirac Operators and Mathematics



Clifford $\longleftarrow$ Dirac Operator $\longrightarrow$ Elliptic
Clifford
Algebras


Differential
Geometry

## The Dirac Equation

- In special relativity we have the famous relationship

$$
\begin{equation*}
E=\sqrt{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+m^{2} c^{4}} \tag{1}
\end{equation*}
$$

- In Quantum Mechanics one "quantizes" the previous equation by turning, $E, p_{x}, p_{y}, p_{z}$ into differential operators

$$
E \longrightarrow i \frac{\partial}{\partial t} \quad p_{x} \longrightarrow-i \frac{\partial}{\partial x} \quad p_{y} \longrightarrow-i \frac{\partial}{\partial y} \quad p_{z} \longrightarrow-i \frac{\partial}{\partial z}
$$

- Equation 1 becomes

$$
i \frac{\partial}{\partial t}=\sqrt{-\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y^{2}}-\frac{\partial^{2}}{\partial z^{2}}+m^{2} c^{4}}
$$

## Dirac Operator in 1d

Goal: find an operator $\mathcal{D}$ such that

$$
\mathcal{D}^{2}=-\frac{d^{2}}{d x^{2}}
$$

## Dirac Operator in 1d

If you know complex numbers the previous problem is not too difficult, just take

$$
\mathcal{D}=i \frac{d}{d x}
$$

## Formal Self-Adjointness

Assume, that $f, g \in C^{\infty}(\mathbb{R}, \mathbb{C})$ have compact support; then integration by parts says that

$$
\begin{array}{rlc}
<\mathcal{D} f, g>_{L^{2}} & = & \int_{\mathbb{R}}\left(i \frac{d f(x)}{d x}\right) \bar{g}(x) d x \\
& =\left.(i f(x) \bar{g}(x))\right|_{x=-\infty} ^{x=\infty}-\int_{\mathbb{R}} i f(x) \frac{d \overline{\mathrm{~g}}(x)}{d x} d x \\
& = & \int_{\mathbb{R}} f(x) \overline{\left(i \frac{d g}{d x}\right)} d x \\
& = & <f, \mathcal{D} g>_{L^{2}}
\end{array}
$$

so the Dirac operator in 1d is formally self-adjoint!

## Dirac Operator in 2d

Goal: find an operator $\mathcal{D}$ such that

$$
\mathcal{D}^{2}=-\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y^{2}}
$$

## Dirac Operator in 2 d

Inspired in the 1d case, we use the following "ansatz"

$$
\mathcal{D}=a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}
$$

where $a, b$ are some constants. Since

$$
\mathcal{D}^{2}=\left(a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}\right)\left(a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}\right)=a^{2} \frac{\partial^{2}}{\partial x^{2}}+(a b+b a) \frac{\partial^{2}}{\partial x \partial y}+b^{2} \frac{\partial^{2}}{\partial y^{2}}
$$

so we need

$$
\left\{\begin{array}{l}
a^{2}=-1 \\
a b+b a=0 \\
b^{2}=-1
\end{array}\right.
$$

In particular, $a$ and $b$ must anticommute!

## Dirac Operator in 2d

It is not hard to check that

$$
a=\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right) \quad b=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

satisfy $a^{2}=b^{2}=-I d$ and $a b=-b a$. Therefore, our Dirac Operator $\mathcal{D}=a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}$ in 2 d is

$$
\mathcal{D}=\left(\begin{array}{cc}
0 & i \frac{\partial}{\partial x}+\frac{\partial}{\partial y} \\
i \frac{\partial}{\partial x}-\frac{\partial}{\partial y} & 0
\end{array}\right)
$$

and so

$$
\mathcal{D}^{2}=\left(\begin{array}{cc}
-\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y^{2}} & 0 \\
0 & -\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y^{2}}
\end{array}\right)=\left(-\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y^{2}}\right) / d d
$$

## The Cauchy Riemann Operator

We can rewrite the Dirac operator as

$$
\mathcal{D}=2 i\left(\begin{array}{cc}
0 & \frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right) \\
\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right) & 0
\end{array}\right)=2 i\left(\begin{array}{cc}
0 & \frac{\partial}{\partial z} \\
\frac{\partial}{\partial \bar{z}} & 0
\end{array}\right)
$$

Therefore
$\binom{\psi}{\phi} \in \operatorname{ker} \mathcal{D} \longleftrightarrow \psi$ is holomorphic and $\phi$ is antiholomorphic

## Formal Self-Adjointness

If we write

$$
\mathcal{D}=\left(\begin{array}{cc}
0 & i \frac{\partial}{\partial x}+\frac{\partial}{\partial y} \\
i \frac{\partial}{\partial x}-\frac{\partial}{\partial y} & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & \tilde{D} \\
D & 0
\end{array}\right)
$$

using Green's Theorem it can be checked that for $f, g \in C^{\infty}\left(\mathbb{R}^{2}, \mathbb{C}\right)$

$$
<D f, g>_{L^{2}}=<f, \tilde{D} g>_{L^{2}}
$$

so that $\tilde{D}$ is the formal adjoint of $D$. So we can write

$$
\mathcal{D}=\left(\begin{array}{cc}
0 & D^{*}  \tag{2}\\
D & 0
\end{array}\right)
$$

which proves again that the Dirac operator is formally self-adjoint!
Spoiler Alert: in even dimensions we will always have a decomposition for the Dirac operator like previous one!

## Dirac Operator in 3d

Just as we did for one and two dimensions, if we take

$$
\mathcal{D}=c_{1} \frac{\partial}{\partial x}+c_{2} \frac{\partial}{\partial y}+c_{3} \frac{\partial}{\partial z}
$$

then $\mathcal{D}^{2}=-\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)$ if and only if

$$
\left\{\begin{array}{l}
c_{1}^{2}=c_{2}^{2}=c_{3}^{2}=-1 \\
c_{1} c_{2}+c_{2} c_{1}=c_{1} c_{3}+c_{3} c_{1}=c_{2} c_{3}+c_{3} c_{2}=0
\end{array}\right.
$$

The previous system of equations is satisfied by Hamilton's Quaternions, i.e, we can take

$$
\mathcal{D}=\mathbf{i} \frac{\partial}{\partial x}+\mathbf{j} \frac{\partial}{\partial y}+\mathbf{k} \frac{\partial}{\partial z}
$$

## Dirac Operator on $\mathbb{R}^{n}$ and Clifford Algebras

For $\mathbb{R}^{n}$, the Dirac Operator (for the standard inner product) will be

$$
\mathcal{D}=\gamma_{1} \frac{\partial}{\partial x_{1}}+\gamma_{2} \frac{\partial}{\partial x_{2}}+\cdots+\gamma_{n} \frac{\partial}{\partial x_{n}}
$$

where the $\gamma_{i}$ are the generators for the Clifford Algebra of $\mathbb{R}^{n}$, i.e,

$$
\left\{\begin{array}{l}
\gamma_{i}^{2}=-1 \\
\left\{\gamma_{i}, \gamma_{j}\right\}=0 \quad \text { if } i \neq j
\end{array}\right.
$$

## What About the Dirac Equation?

We were trying to find $\mathcal{D}$ such that

$$
\mathcal{D}^{2}=\frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y^{2}}-\frac{\partial^{2}}{\partial z^{2}}
$$

In fact we can take

$$
\mathcal{D}=\left(\begin{array}{cccc}
\partial_{t} & 0 & \partial_{z} & \partial_{x}-i \partial_{y} \\
0 & \partial_{t} & \partial_{x}+i \partial_{y} & -\partial_{z} \\
-\partial_{z} & -\partial_{x}+i \partial_{y} & -\partial_{t} & 0 \\
-\partial_{x}-i \partial_{y} & \partial_{z} & 0 & -\partial_{t}
\end{array}\right)
$$

The Dirac equation was used to predict the existence of antiparticles!

## What About Other Spaces?

- What do we mean by the Laplacian on an arbitrary manifold $M$ ? Does it always exist?
- What do we mean by the Dirac Operator on an arbitrary manifold $M$ ? Does it always exist?


## Ingredient 1: Fourier Transform

Recall that for a sufficiently well behaved function $u: \mathbb{R} \longrightarrow \mathbb{R}$ we can define its Fourier transform $\mathcal{F} u: \mathbb{R} \longrightarrow \mathbb{R}$ by

$$
\mathcal{F} u(x)=\hat{u}(p)=\int_{\mathbb{R}} e^{-2 \pi i p x} u(x) d x
$$

Modulo some constants, differentiation becomes multiplication in that

$$
\begin{array}{cc}
\frac{d \hat{u}}{d p}=\int_{\mathbb{R}}(-2 \pi i x) e^{-2 \pi i p x} \hat{u}(p) d p= & {[-2 \pi i x u(x)]=\mathcal{F}(-2 \pi i x u(x))} \\
u \quad \xrightarrow{-2 \pi i x .} & -2 \pi i u \\
\mathcal{F} \downarrow & \downarrow_{\mathcal{F}} \\
\hat{u} \quad \xrightarrow{\frac{d}{d p}} & \frac{d \hat{u}}{d p}
\end{array}
$$

## Ingredient 2: Local Coordinates

On a general manifold $M$ we don't have global coordinates (think of a sphere), however, we can use local coordinates $x_{1}, \cdots, x_{n}$ to describe it. In particular, a linear differential operator $L$ of order $m$ can be described locally as an operator

$$
L: C^{\infty}\left(M ; \mathbb{R}^{q}\right) \longrightarrow C^{\infty}\left(M ; \mathbb{R}^{p}\right)
$$

given by

$$
L u=\sum_{|\alpha| \leq m} a_{\alpha}(x) \underbrace{\frac{\partial^{\alpha_{1}}}{\partial x_{1}^{\alpha_{1}}} \cdots \frac{\partial^{\alpha_{n}}}{\partial x_{n}^{\alpha_{n}}}}_{D^{\alpha}} u
$$

where $u=\left(u_{1}, \cdots, u_{q}\right): M \longrightarrow \mathbb{R}^{q}$ and the $a_{\alpha}(x)$ are $p \times q$ matrices

## Symbol of a Differential Operator

For our differential operator

$$
L u=\sum_{|\alpha| \leq m} a_{\alpha}(x) \frac{\partial^{\alpha_{1}}}{\partial x_{1}^{\alpha_{1}}} \cdots \frac{\partial^{\alpha_{n}}}{\partial x_{n}^{\alpha_{n}}} u
$$

we define its (leading) symbol by replacing the partial derivatives by "momenta"

$$
\sigma_{L}(x, p) \equiv \sum_{|\alpha|=m} a_{\alpha}(x) p_{1}^{\alpha_{1}} \cdots p_{n}^{\alpha_{n}}
$$

## Example on $M=\mathbb{R}^{3}$

$$
\begin{gathered}
L: C^{\infty}\left(M, \mathbb{R}^{3}\right) \longrightarrow C^{\infty}\left(M, \mathbb{R}^{2}\right) \\
\left(u_{1}(\mathbf{x}), u_{2}(\mathbf{x}), u_{3}(\mathbf{x})\right) \longrightarrow\left(x_{1} x_{2} \frac{\partial^{2} u_{1}}{\partial x_{1}^{2}}+\frac{\partial u_{3}}{\partial x_{1}}+\frac{\partial^{2} u_{2}}{\partial x_{1} \partial x_{3}}, \frac{\partial^{2} u_{3}}{\partial x_{1} \partial x_{3}}\right)
\end{gathered}
$$

For the (leading) symbol keep the highest order terms so we work with

$$
\left(x_{1} x_{2} \frac{\partial^{2} u_{1}}{\partial x_{1}^{2}}+\frac{\partial^{2} u_{2}}{\partial x_{1} \partial x_{3}}, \frac{\partial^{2} u_{3}}{\partial x_{1} \partial x_{3}}\right)=\left(x_{1} x_{2} \frac{\partial^{2} u_{1}}{\partial x_{1}^{2}}, 0\right)+\left(\frac{\partial^{2} u_{2}}{\partial x_{1} \partial x_{3}}, \frac{\partial^{2} u_{3}}{\partial x_{1} \partial x_{3}}\right)
$$

$$
L\left(u_{1}, u_{2}, u_{3}\right)=\left[\left(\begin{array}{ccc}
x_{1} x_{2} & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \frac{\partial^{2}}{\partial x_{1}^{2}}+\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \frac{\partial^{2}}{\partial x_{1} \partial x_{3}}\right]\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)
$$

$$
\sigma_{L}\left(x_{1}, x_{2}, x_{3}, p_{1}, p_{2}, p_{3}\right)=\left(\begin{array}{ccc}
x_{1} x_{2} p_{1}^{2} & p_{1} p_{3} & 0 \\
0 & 0 & p_{1} p_{3}
\end{array}\right)
$$

## Gradient on $M=\mathbb{R}^{3}$

$$
\begin{gathered}
\nabla: C^{\infty}(M, \mathbb{R}) \longrightarrow C^{\infty}\left(M, \mathbb{R}^{3}\right) \\
\nabla u=\left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}\right) \\
u\left(x_{1}, x_{2}, x_{3}\right) \longrightarrow\left[\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \frac{\partial}{\partial x}+\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \frac{\partial}{\partial y}+\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \frac{\partial}{\partial z}\right] u
\end{gathered}
$$

Its symbol is

$$
\sigma_{\nabla}(\mathbf{x}, \mathbf{p})=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) p_{1}+\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) p_{2}+\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) p_{3}=\left(\begin{array}{c}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right)
$$

## Curl on $M=\mathbb{R}^{3}$

$$
\begin{gathered}
\text { curl : } C^{\infty}\left(M, \mathbb{R}^{3}\right) \longrightarrow C^{\infty}\left(M, \mathbb{R}^{3}\right) \\
\nabla \times\left(u_{1}, u_{2}, u_{3}\right)=\left(\frac{\partial u_{3}}{\partial y}-\frac{\partial u_{2}}{\partial z}, \frac{\partial u_{1}}{\partial z}-\frac{\partial u_{3}}{\partial x}, \frac{\partial u_{2}}{\partial x}-\frac{\partial u_{1}}{\partial y}\right) \\
{\left[\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right) \frac{\partial}{\partial x}+\left(\begin{array}{ccc}
0 & \left(u_{1}, u_{2}, u_{3}\right) \rightarrow \\
0 & 0 & 1 \\
-1 & 0 & 0
\end{array}\right) \frac{\partial}{\partial y}+\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \frac{\partial}{\partial z}\right]\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)}
\end{gathered}
$$

Its symbol is

$$
\sigma_{\text {curl }}(\mathbf{x}, \mathbf{p})=\left(\begin{array}{ccc}
0 & -p_{3} & p_{2} \\
p_{3} & 0 & -p_{1} \\
-p_{2} & p_{1} & 0
\end{array}\right)
$$

## Divergence on $M=\mathbb{R}^{3}$

$$
\begin{aligned}
& \text { div: } C^{\infty}\left(M, \mathbb{R}^{3}\right) \longrightarrow C^{\infty}(M, \mathbb{R}) \\
& \nabla \cdot\left(u_{1}, u_{2}, u_{3}\right)=\frac{\partial u_{1}}{\partial x}+\frac{\partial u_{2}}{\partial y}+\frac{\partial u_{3}}{\partial z} \\
& \left(u_{1}, u_{2}, u_{3}\right) \rightarrow \\
& \left.\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right) \frac{\partial}{\partial x}+\left(\begin{array}{ccc}
0 & 1 & 0
\end{array}\right) \frac{\partial}{\partial y}+\left(\begin{array}{ccc}
0 & 0 & 1
\end{array}\right) \frac{\partial}{\partial z}\right]\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)
\end{aligned}
$$

Its symbol is

$$
\sigma_{\mathrm{div}}(\mathbf{x}, \mathbf{p})=\left(\begin{array}{lll}
p_{1} & p_{2} & p_{3}
\end{array}\right)
$$

## Generalized Laplacian and Dirac Type Operator

Suppose that $\mathcal{E}$ is a vector bundle over a Riemannian manifold M.

- A Generalized Laplacian on $\mathcal{E}$ is a second order differential operator $\triangle$ such that

$$
\sigma_{\triangle}(x, \mathbf{p})=-\|\mathbf{p}\|^{2}
$$

- An Operator of Dirac Type on $\mathcal{E}$ is a first order differential operator $\mathcal{D}$ such that

$$
\sigma_{\mathcal{D}^{*} \mathcal{D}}(x, \mathbf{p})=-\|\mathbf{p}\|^{2}
$$

i.e, the symbol of its "square" acts in the same way as the symbol of a generalized Laplacian

## An Old Friend

Recall that in $\mathbb{R}^{2}$ our Dirac operator was

$$
\mathcal{D}=\left(\begin{array}{cc}
0 & i \frac{\partial}{\partial x}+\frac{\partial}{\partial y} \\
i \frac{\partial}{\partial x}-\frac{\partial}{\partial y} & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & D^{*} \\
D & 0
\end{array}\right)
$$

Since

$$
\sigma_{D}(\mathbf{x}, \mathbf{p})=i p_{1}-p_{2} \quad \sigma_{D^{*}}(\mathbf{x}, \mathbf{p})=i p_{1}+p_{2}
$$

then
$\sigma_{D^{*} D}(\mathbf{x}, \mathbf{p})=\sigma_{D^{*}}(\mathbf{x}, \mathbf{p}) \circ \sigma_{D}(\mathbf{x}, \mathbf{p})=\left(i p_{1}+p_{2}\right)\left(i p_{1}-p_{2}\right)=-p_{1}^{2}-p_{2}^{2}=-\|\mathbf{p}\|^{2}$
so $D$ is an operator of Dirac type.

## Vector Operations on $M=\mathbb{R}^{3}$ and de Rham Cohomology

$$
0 \rightarrow C_{\mathbb{R}^{3}}^{\infty}(\mathbb{R}) \xrightarrow{\nabla} C_{\mathbb{R}^{3}}^{\infty}\left(\mathbb{R}^{3}\right) \xrightarrow{\nabla \times} C_{\mathbb{R}^{3}}^{\infty}(\mathbb{R}) \xrightarrow{\nabla} C_{\mathbb{R}^{3}}^{\infty}(\mathbb{R}) \rightarrow 0
$$

From vector calculus we know that

$$
\begin{cases}\nabla \times(\nabla \phi)=0 & \operatorname{curl}(\text { grad })=0 \\ \nabla \cdot(\nabla \times \mathbf{E})=0 & \operatorname{div}(\text { curl })=0\end{cases}
$$

therefore we can define a cohomology $H_{D R}^{*}\left(\mathbb{R}^{3}\right)$ !

## Computing $H_{D R}^{0}\left(\mathbb{R}^{3}\right)$

$$
\begin{gathered}
0 \rightarrow C_{\mathbb{R}^{3}}^{\infty}(\mathbb{R}) \xrightarrow{\nabla} C_{\mathbb{R}^{3}}^{\infty}\left(\mathbb{R}^{3}\right) \xrightarrow{\nabla \times} C_{\mathbb{R}^{3}}^{\infty}(\mathbb{R}) \xrightarrow{\nabla \cdot} C_{\mathbb{R}^{3}}^{\infty}(\mathbb{R}) \rightarrow 0 \\
H_{D R}^{0}\left(\mathbb{R}^{3}\right)=\operatorname{ker} \nabla=\left\{\phi: \mathbb{R}^{3} \longrightarrow \mathbb{R} \mid \nabla \phi \equiv 0\right\}
\end{gathered}
$$

Now, $\nabla \phi \equiv 0$ if and only if $\phi$ is a constant scalar field. Since there is a constant scalar field for each real number we have that

$$
H_{D R}^{0}\left(\mathbb{R}^{3}\right) \simeq \mathbb{R}
$$

## Computing $H_{D R}^{1}\left(\mathbb{R}^{3}\right)$

$$
\begin{aligned}
& 0 \rightarrow C_{\mathbb{R}^{3}}^{\infty}(\mathbb{R}) \xrightarrow{\nabla} C_{\mathbb{R}^{3}}^{\infty}\left(\mathbb{R}^{3}\right) \xrightarrow{\nabla \times} C_{\mathbb{R}^{3}}^{\infty}(\mathbb{R}) \xrightarrow{\nabla \cdot} C_{\mathbb{R}^{3}}^{\infty}(\mathbb{R}) \rightarrow 0 \\
& H_{D R}^{1}\left(\mathbb{R}^{3}\right)=\frac{\operatorname{ker}(\mathrm{curl})}{\mathrm{im}(\mathrm{grad})}=\left\{[\mathrm{E}] \mid \nabla \times \mathbf{E}=0 \text { and } \mathrm{E} \sim \mathrm{E}^{\prime} \text { iff } \mathrm{E}^{\prime}=\mathrm{E}+\nabla \phi\right\}
\end{aligned}
$$

From Advanced Calculus we know that every irrotational vector field $\mathbf{E}$ is conservative, i.e, $\mathbf{E}=\nabla \phi$ so $\mathbf{E} \in[\mathbf{0}]$ and hence

$$
H_{D R}^{1}\left(\mathbb{R}^{3}\right)=0
$$

## Computing $H_{D R}^{2}\left(\mathbb{R}^{3}\right)$

$$
\begin{aligned}
& 0 \rightarrow C_{\mathbb{R}^{3}}^{\infty}(\mathbb{R}) \xrightarrow{\nabla} C_{\mathbb{R}^{3}}^{\infty}\left(\mathbb{R}^{3}\right) \xrightarrow{\nabla \times} C_{\mathbb{R}^{3}}^{\infty}(\mathbb{R}) \xrightarrow{\nabla \cdot} C_{\mathbb{R}^{3}}^{\infty}(\mathbb{R}) \rightarrow 0 \\
& H_{D R}^{2}\left(\mathbb{R}^{3}\right)=\frac{\operatorname{ker}(\text { div })}{i m(\text { curl })}=\left\{[\mathbf{B}] \mid \nabla \cdot \mathbf{B}=0 \text { and } \mathbf{B} \sim \mathbf{B}^{\prime} \text { iff } \mathbf{B}^{\prime}=\mathbf{B}+\nabla \times \mathbf{A}\right\}
\end{aligned}
$$

From Electromagnetism/Vector Calculus we know that every solenoidal vector field $\mathbf{B}$ has a vector potential $\mathbf{A}$, i.e, $\mathbf{B}=\nabla \times \mathbf{A}$ so $\mathbf{B} \in[0]$ and hence

$$
H_{D R}^{2}\left(\mathbb{R}^{3}\right)=0
$$

## Computing $H_{D R}^{3}\left(\mathbb{R}^{3}\right)$

$$
0 \rightarrow C_{\mathbb{R}^{3}}^{\infty}(\mathbb{R}) \xrightarrow{\nabla} C_{\mathbb{R}^{3}}^{\infty}\left(\mathbb{R}^{3}\right) \xrightarrow{\nabla \times} C_{\mathbb{R}^{3}}^{\infty}(\mathbb{R}) \xrightarrow{\nabla \cdot} C_{\mathbb{R}^{3}}^{\infty}(\mathbb{R}) \rightarrow 0
$$

$$
H_{D R}^{3}\left(\mathbb{R}^{3}\right)=\operatorname{coker}(\text { div })=\left\{[f] \mid f: \mathbb{R}^{3} \longrightarrow \mathbb{R} \text { and } f \sim g \text { iff } f=g+\nabla \cdot \mathbf{B}\right.
$$

Since $f(x, y, z)=\nabla \cdot\left(\int_{0}^{x} f(t, y, z) d t, 0,0\right)$ we have $f \in[0]$ so

$$
H_{D R}^{3}\left(\mathbb{R}^{3}\right)=0
$$

## Differential Equations and Topology: de Rham's Theorem

De Rham's Theorem: the de Rham cohomology is isomorphic to the cohomology of the manifold, i.e,

$$
H_{D R}^{*}(M) \simeq H^{*}(M)
$$

In particular we can compute the Euler characteristic of the manifold as

$$
\chi(M)=\sum_{i=0}^{\operatorname{dim} M}(-1)^{i} \operatorname{dim} H_{D R}^{i}(M)
$$

which means that the topology of the space restricts the dimensions of the space of solutions of certain differential equations (Laws of Physics) on our manifold!

## The Hodge Laplacian

$$
0 \rightleftarrows C_{\mathbb{R}^{3}}^{\infty}(\mathbb{R}) \underset{-\nabla}{\stackrel{\nabla}{\rightleftarrows}} C_{\mathbb{R}^{3}}^{\infty}\left(\mathbb{R}^{3}\right) \underset{\nabla \times}{\stackrel{\nabla x}{\rightleftarrows}} C_{\mathbb{R}^{3}}^{\infty}(\mathbb{R}) \underset{-\nabla}{\stackrel{\nabla}{\rightleftarrows}} C_{\mathbb{R}^{3}}^{\infty}(\mathbb{R}) \rightleftarrows 0
$$

We can define the Hodge Laplacians

$$
\begin{array}{cc}
\triangle_{0}: C_{\mathbb{R}^{3}}^{\infty}(\mathbb{R}) \longrightarrow C_{\mathbb{R}^{3}}^{\infty}(\mathbb{R}) & \triangle_{1}: C_{\mathbb{R}^{3}}^{\infty}\left(\mathbb{R}^{3}\right) \longrightarrow C_{\mathbb{R}^{3}}^{\infty}\left(\mathbb{R}^{3}\right) \\
\triangle_{0}(f)=-\nabla \cdot(\nabla f) & \triangle_{1}(\mathbf{u})=\nabla(-\nabla \cdot \mathbf{u})+\nabla \times(\nabla \times \mathbf{u}) \\
=-\left(\frac{\partial^{2} f}{\partial \chi^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}\right) & =\left(\triangle_{0}\left(u_{1}\right), \Delta_{0}\left(u_{2}\right), \triangle_{0}\left(u_{3}\right)\right)
\end{array}
$$

## The Hodge Operator

We can combine them to define a Laplacian on

$$
\Omega_{M}^{*}=\left[C_{\mathbb{R}^{3}}^{\infty}(\mathbb{R}) \oplus C_{\mathbb{R}^{3}}^{\infty}\left(\mathbb{R}^{3}\right)\right] \oplus\left[C_{\mathbb{R}^{3}}^{\infty}(\mathbb{R}) \oplus C_{\mathbb{R}^{3}}^{\infty}\left(\mathbb{R}^{3}\right)\right]
$$

Define the Hodge- Laplacian

$$
\begin{gathered}
\triangle_{H}: \Omega_{M}^{*} \longrightarrow \Omega_{M}^{*} \\
\triangle_{H}\binom{(f, \mathbf{u})}{(g, \mathbf{v})}=\binom{\left(\triangle_{0} f, \triangle_{1} \mathbf{u}\right)}{\left(\triangle_{0} g, \triangle_{1} \mathbf{v}\right)}
\end{gathered}
$$

Does it have a Dirac operator?
Observe that

$$
\operatorname{rank} \Omega_{M}^{*}=8=2^{3}=2^{\operatorname{dim} M}
$$

## The Hodge-Dirac Operator

$$
\begin{aligned}
& 0 \rightleftarrows C_{\mathbb{R}^{3}}^{\infty}(\mathbb{R}) \underset{-\nabla .}{\stackrel{\nabla}{\rightleftarrows}} C_{\mathbb{R}^{3}}^{\infty}\left(\mathbb{R}^{3}\right) \underset{\nabla \times}{\stackrel{\nabla x}{\rightleftarrows}} C_{\mathbb{R}^{3}}^{\infty}(\mathbb{R}) \underset{-\nabla}{\stackrel{\nabla}{\rightleftarrows}} C_{\mathbb{R}^{3}}^{\infty}(\mathbb{R}) \rightleftarrows 0 \\
& \begin{array}{llll}
f & \mathbf{v} & \mathbf{u} & g \\
0 & 1 & 2 & 3
\end{array} \\
& \mathcal{D}\binom{(f, \mathbf{u})}{(g, \mathbf{v})}=\binom{\left(-\nabla \cdot \mathbf{v},-\nabla g+\nabla \times \mathbf{\Omega _ { M } ^ { * }} \longrightarrow \Omega_{M}^{*}\right.}{(\nabla \cdot \mathbf{u}, \nabla f+\nabla \times \mathbf{u})}=\left(\begin{array}{cc}
0 & D^{*} \\
D & 0
\end{array}\right)\left(\begin{array}{c}
(f, \mathbf{u}) \\
(g, \mathbf{v})
\end{array}\right. \\
& \left\{\begin{array}{l}
D(f, \mathbf{u})=(\nabla \cdot \mathbf{u}, \nabla f+\nabla \times \mathbf{u}) \\
D^{*}(g, \mathbf{v})=(-\nabla \cdot \mathbf{v},-\nabla g+\nabla \times \mathbf{v})
\end{array}\right. \\
& \mathcal{D}^{2}\binom{(f, \mathbf{u})}{(g, \mathbf{v})}=\triangle_{H}\binom{(f, \mathbf{u})}{(g, \mathbf{v})}
\end{aligned}
$$

Therefore we found a square root for the Laplacianb

## "Index" Hodge-Dirac Operator on $M=\mathbb{R}^{3}$

We have that

$$
\begin{aligned}
& \operatorname{ker} D=\{(f, \mathbf{u}) \mid \nabla \cdot \mathbf{u}=0 \text { and } \nabla f=-\nabla \times \mathbf{u}\} \\
& \operatorname{ker} D^{*}=\{(g, \mathbf{v}) \mid \nabla \cdot \mathbf{v}=0 \text { and } \nabla g=\nabla \times \mathbf{v}\}
\end{aligned}
$$

and $(f, \mathbf{u}) \longrightarrow(-f, \mathbf{u})$ gives a bijection between $\operatorname{ker} D$ and $\operatorname{ker} D^{*}$.

$$
\operatorname{index} D \equiv \operatorname{dim} \operatorname{ker} D-\operatorname{dim} \operatorname{ker} D^{*} \stackrel{?}{=} 0
$$

The previous calculation fails because $\operatorname{ker} D$ and $\operatorname{ker} D^{*}$ are infinite dimensional! However, if we run the same argument on a compact, oriented, Riemannian manifold it can be show that

$$
\text { index } D=\chi(M)
$$

so an analytical quantity (the index) is determined by a topological quantity (Euler Characteristic)!

## Fixing the problem: Fredholm Operators

A bounded linear operator $T: E \longrightarrow F$ between Banach spaces is called Fredholm if it has finite dimensional kernel and cokernel. We can define its index by

$$
\text { index } T \equiv \operatorname{dim} \operatorname{ker} T-\operatorname{dim} \text { coker } T
$$

$\sim \sim$ : If $E, F$ are finite dimensional vector spaces then by the rank-nullity theorem ( $\operatorname{dim} E=\operatorname{dim} \operatorname{ker} T+\operatorname{dim} \operatorname{im} T)$ the index is independent of the operator since

$$
\text { index } T=\operatorname{dim} E-\operatorname{dim} F
$$

$\sim \sim$ : In infinite dimensions the index can depend on the operator. For example, in $l^{2}$ we have

$$
\begin{array}{cc}
\text { shift }^{+}\left(c_{0}, c_{1}, c_{2}, \cdots\right)=\left(0, c_{0}, c_{1}, c_{2}, \cdots,\right) & \text { ind }\left(\text { shift }^{+}\right)=-1 \\
\operatorname{shift}^{-}\left(c_{0}, c_{1}, c_{2}, \cdots\right)=\left(c_{1}, c_{2}, \cdots,\right) & \text { ind (shift })= \pm 1
\end{array}
$$

## Fixing the problem: Elliptic Operators

An operator $D$ is elliptic if

$$
\mathbf{p} \neq \mathbf{0} \longrightarrow \sigma_{D}(x, \mathbf{p}) \text { is invertible }
$$

For example, the symbol for $D(f, \mathbf{u})=(\nabla \cdot \mathbf{u}, \nabla f+\nabla \times \mathbf{u})$ is

$$
\sigma_{D}(\mathbf{x}, \mathbf{p})=\left(\begin{array}{cccc}
0 & p_{1} & p_{2} & p_{3} \\
p_{1} & 0 & -p_{3} & p_{2} \\
p_{2} & p_{3} & 0 & -p_{1} \\
p_{3} & -p_{2} & p_{1} & 0
\end{array}\right)
$$

and since $\operatorname{det} \sigma_{D}(\mathbf{x}, \mathbf{p})=-\left(p_{1}^{2}+p_{2}^{2}+p_{3}^{2}\right)^{2}$ we see that whenever $\left(p_{1}, p_{2}, p_{3}\right) \neq(0,0,0)$ the matrix $\sigma_{D}(\mathbf{x}, \mathbf{p})$ is invertible, i.e, $D$ is an elliptic operator!
$\sim \sim$ The "wave operator"

$$
\frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y^{2}}-\frac{\partial^{2}}{\partial z^{2}}
$$

has symbol

$$
\sigma_{\square}(\mathbf{x}, \mathbf{p})=p_{0}^{2}-p_{1}^{2}-p_{2}^{2}-p_{3}^{2}
$$

and it clearly vanishes on the "light cones"
$p_{0}^{2}-p_{1}^{2}-p_{2}^{2}-p_{3}^{2}=0$
~The "heat kernel operator"

$$
\frac{\partial}{\partial t}-\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y^{2}}-\frac{\partial^{2}}{\partial z^{2}}
$$

has symbol

$$
\sigma_{H}(\mathbf{x}, \mathbf{p})=-p_{1}^{2}-p_{2}^{2}-p_{3}^{2}
$$

and it clearly vanishes whenever $p_{1}=p_{2}=p_{3}=0$ and $p_{0} \in \mathbb{R}$.

## Why do we care about Elliptic Operators on a

 compact manifold?1) The operators of Dirac type are always elliptic
2) Over a compact manifold $M$, being elliptic implies being Fredholm
3) Fredholm operators are very stable under perturbations, which suggests that the index of a Fredholm operator might be computed via topological quantities

## The Atiyah-Singer Theorem

## indexD $\stackrel{\text { AS }}{=}$ topological stuff!

where by "topological stuff" we mean certain characteristic classes associated to the manifold and the vector bundle on which the Dirac operator acts.

## What I Left Out

Harmonic Analysis

$$
\uparrow
$$

Lie Groups $\longleftarrow$ Dirac Operators and Algebras
$\longrightarrow$ Noncommutative Geometry

## Thank you!



Source:
https://commons.wikimedia.org/wiki/File:Dirac\'s_commemorative_marker.jpg

