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Monopole Floer Homology

I (Y , s): closed oriented 3-manifold Y + spin-c structure s on Y

I Monopole Floer Homology produces a family of abelian groups

(Y , s) 

8
>>><

>>>:

HM

V

•(Y , s) HF
+(Y , s)

dHM•(Y , s) ' HF
�(Y , s)

HM•(Y , s) HF
1(Y , s)

H̃M(Y , s) cHF (Y , s)

where the previous isomorphism with the Heegaard-Floer homology
is due to [Lee-Kutluhan-Taubes] and [Ghiggini-Colin-Honda]

I Each group admits a decomposition

HM•(Y , s) =
M

[⇠]

HM•(Y , s, [⇠])

where [⇠] denotes a homotopy class of oriented plane fields.



Monopole Floer Homology

I (Y , s): closed oriented 3-manifold Y + spin-c structure s on Y

I Monopole Floer Homology produces a family of abelian groups

(Y , s) 

8
>>><

>>>:

HM

V

•(Y , s) HF
+(Y , s)

dHM•(Y , s) ' HF
�(Y , s)

HM•(Y , s) HF
1(Y , s)

H̃M(Y , s) cHF (Y , s)

where the previous isomorphism with the Heegaard-Floer homology
is due to [Lee-Kutluhan-Taubes] and [Ghiggini-Colin-Honda]

I Each group admits a decomposition

HM•(Y , s) =
M

[⇠]

HM•(Y , s, [⇠])

where [⇠] denotes a homotopy class of oriented plane fields.



Monopole Floer Homology

I (Y , s): closed oriented 3-manifold Y + spin-c structure s on Y

I Monopole Floer Homology produces a family of abelian groups

(Y , s) 

8
>>><

>>>:

HM

V

•(Y , s) HF
+(Y , s)

dHM•(Y , s) ' HF
�(Y , s)

HM•(Y , s) HF
1(Y , s)

H̃M(Y , s) cHF (Y , s)

where the previous isomorphism with the Heegaard-Floer homology
is due to [Lee-Kutluhan-Taubes] and [Ghiggini-Colin-Honda]

I Each group admits a decomposition

HM•(Y , s) =
M

[⇠]

HM•(Y , s, [⇠])

where [⇠] denotes a homotopy class of oriented plane fields.



Monopole Floer Homology

I (Y , s): closed oriented 3-manifold Y + spin-c structure s on Y

I Monopole Floer Homology produces a family of abelian groups

(Y , s) 

8
>>><

>>>:

HM

V

•(Y , s) HF
+(Y , s)

dHM•(Y , s) ' HF
�(Y , s)

HM•(Y , s) HF
1(Y , s)

H̃M(Y , s) cHF (Y , s)

where the previous isomorphism with the Heegaard-Floer homology
is due to [Lee-Kutluhan-Taubes] and [Ghiggini-Colin-Honda]

I Each group admits a decomposition

HM•(Y , s) =
M

[⇠]

HM•(Y , s, [⇠])

where [⇠] denotes a homotopy class of oriented plane fields.



Monopole Floer Homology

I (Y , s): closed oriented 3-manifold Y + spin-c structure s on Y

I Monopole Floer Homology produces a family of abelian groups

(Y , s) 

8
>>><

>>>:

HM

V

•(Y , s) HF
+(Y , s)

dHM•(Y , s) ' HF
�(Y , s)

HM•(Y , s) HF
1(Y , s)

H̃M(Y , s) cHF (Y , s)

where the previous isomorphism with the Heegaard-Floer homology
is due to [Lee-Kutluhan-Taubes] and [Ghiggini-Colin-Honda]

I Each group admits a decomposition

HM•(Y , s) =
M

[⇠]

HM•(Y , s, [⇠])

where [⇠] denotes a homotopy class of oriented plane fields.



TFQT Features of Monopole Floer Homology

(W , sW ) : (Y , sY ) ! (Y 0, sY 0)

Induces maps for each of the flavors

HM
•(W , sW ) : HM•(Y 0, sY 0) ! HM

•(Y , sY )

HM•(W , sW ) : HM•(Y , sY ) ! HM•(Y 0, sY 0)
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The Contact Invariant and the Naturality Problem

Given (Y , ⇠) , KMOS defined the contact invariant

c(⇠) 2 dHM
•
(Y , s⇠) ' HM

V

•(�Y , s⇠)

It belongs to the summand determined by [⇠].

Naturality Problem: For which (W , sW ) is it true that

dHM
•
(W , sW )c(⇠0) = c(⇠)
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Naturality under Strong Symplectic Cobordisms
Theorem (E. 2018)
Let (W ,!) : (Y , ⇠) ! (Y 0, ⇠0) be a strong symplectic cobordism be-
tween two contact manifolds (Y , ⇠) and (Y 0, ⇠0). Then

dHM
•
(W , sW )c(⇠0) = c(⇠)

I Mrowka and Rollin obtained this result in an earlier, unpublished
paper.

I Here a strong symplectic cobordism (W ,!) is a symplectic
cobordism where ! is determined near

@W = �Y t Y
0

by the symplectizations of ⇠ and ⇠0.
I The naturality result is with Z/2Z coefficients.
I The result is not known for Heegaard Floer in such generality.
I Michael Hutchings is currently writing the corresponding result for

Embedded Contact Homology.
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Non-vanishing under strong fillings

Corollary: (Ghiggini) (E.) If (X ,!) is a strong filling of (Y , ⇠), c(⇠) 6= 0.

I Remove a Darboux ball B4 from X to obtain a strong symplectic
cobordism (W = X\B , s!) : (S3, ⇠tight) ! (Y , ⇠)

I Ghiggini gave examples of weak fillings where the contact invariant
vanishes, so the naturality result cannot be naively extended to
the case of weak symplectic cobordisms.
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Vanishing for overtwisted structures

Corollary: (Ozsváth-Szabó) (E.) If (Y , ⇠) is overtwisted then c(⇠) = 0.

I We can now conclude that:
i) c(⇠) 6= 0 =) (Y , ⇠) is tight,
ii) if (Y , ⇠) is strongly fillable then it must be tight.

Corollary: (Wendl) (E.) When (Y , ⇠) has planar torsion then c(⇠) = 0.
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Proof of vanishing result

I Can find [⇠̃] satisfying dHM
•
(S3, [⇠̃]) = 0.

I Eliashberg’s theorem says there is ⇠ot with [⇠ot ] = [⇠̃]. Hence

c(⇠ot) 2 dHM
•
(S3, [⇠̃]) = 0

I If (Y , ⇠) is overtwisted by Etnyre-Honda we can find a Stein cob.

(Wstrong , s!) : (Y , ⇠, s⇠) ! (S3, ⇠ot)
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Other applications

Corollary: (Ozsváth-Szabó) (E.) Let (X ,!) be a strong filling of
(Y 0, ⇠0).

Assume in addition that Y 0 is an L-space. Then X must be
negative definite.

Corollary: Suppose (Y , ⇠) is a planar contact manifold:

i) (Ozsváth, Stipsciz and Szabó) (E.) The reduced part of the contact
invariant vanishes, i.e, [c(⇠)]red = 0.

ii) (Etnyre) (E.) Any strong filling of (Y , ⇠) must be negative definite.
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Relative Invariants
I When X is a closed, SW equations give rise to numerical invariants

SW (X , sX ) 2 Z

I When @X = Y , SW equations give rise to relative invariants

'X ,sX 2 HM•(Y , sY )

'X ,sX =
X

[a]

n[a][a] =
X

[a]

⇣X
#M0(X

⇤; [a])
⌘
[a]
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Definition of the Contact Invariant

The contact invariant c(⇠) of (Y , ⇠) is the relative invariant associated to
the symplectization of ⇠



Building the Cobordism Maps

HM•(W , sW ) : HM•(Y , s) ! HM•(Y 0, s0)
[a] !

P
[b] n[a],[b][b]

n[a],[b] =
X

#M0([a],W
⇤, [b])
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Showing the Naturality Result: “hybrid invariant”

Use the conical end coming from (Y 0, ⇠0) together with the cylindrical
end coming from (Y , ⇠) to produce a “hybrid invariant”

c(⇠0,Y ) 2 dHM
•
(Y , s⇠) ' HM

V

•(�Y , s⇠)

dHM
•
(W , s!)c(⇠0) = c(⇠0,Y ) = c(⇠)
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Dilating the Cone Argument

c(⇠0,Y ) = c(⇠)
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Thank You!

[image taken from Patrick Massot’s website]


