The 4-color theorem and Gauge theory

Mariano Echeverria

Tait's Equivalence

Theorem. The four-color theorem is equivalent to the statement: every bridgeless, trivalent, planar graph K admits a Tait coloring.

Appel and Haken: Four colors suffice!

Appel and Haken: Four colors suffice!

Avoiding Bridges!!!

Making the graph trivalent

Making the graph trivalent

Making the graph trivalent

Making the graph trivalent

Tait Colorings and the Klein 4-Group V_{4}

Webs

We want to consider the embedding of a graph K in \mathbb{R}^{3} (or S^{3})

$p \in K$ has a neighborhood \mathbf{Y} or -

Kronheimer and Mrowka's Strategy

- spatial web $K \Longrightarrow J^{\#}(K)$ a finite dimensional vector space over \mathbb{F}_{2}

Kronheimer and Mrowka's Strategy

- spatial web $K \Longrightarrow J^{\#}(K)$ a finite dimensional vector space over \mathbb{F}_{2}

Theorem. $J^{\#}(K)$ is non-zero if and only if K has no embedded bridge.

Kronheimer and Mrowka's Strategy

- spatial web $K \Longrightarrow J^{\#}(K)$ a finite dimensional vector space over \mathbb{F}_{2}

Theorem. $J^{\#}(K)$ is non-zero if and only if K has no embedded bridge.

Conjecture. If K is planar, i.e, $K \subset \mathbb{R}^{2} \subset \mathbb{R}^{3}$, then $\operatorname{dim} J^{\#}(K)=\operatorname{Tait}(K)$

Kronheimer and Mrowka's Strategy

- spatial web $K \Longrightarrow J^{\#}(K)$ a finite dimensional vector space over \mathbb{F}_{2}

Theorem. $J^{\#}(K)$ is non-zero if and only if K has no embedded bridge.

Conjecture. If K is planar, i.e, $K \subset \mathbb{R}^{2} \subset \mathbb{R}^{3}$, then $\operatorname{dim} J^{\#}(K)=\operatorname{Tait}(K)$

Remark. A bridgeless, planar, trivalent web K has $J^{\#}(K) \neq 0$ and if the conjecture is true, then Tait $(K) \neq 0$, implying the 4-color theorem.

Kronheimer and Mrowka's Strategy

Theorem. $J^{\#}(K)$ is non-zero if and only if K has no embedded bridge.

Conjecture. If K is planar, i.e, $K \subset \mathbb{R}^{2} \subset \mathbb{R}^{3}$, then $\operatorname{dim} J^{\#}(K)=\operatorname{Tait}(K)$

Remark. - A bridgeless, planar, trivalent web K has $J^{\#}(K) \neq 0$ and if the conjecture is true, then $\operatorname{Tait}(K) \neq 0$, implying the 4-color theorem.

- The non-vanishing result uses Gabai's theory of sutured manifolds

Some Results and Questions

- One inequality of the conjecture is true, namely, if K is planar then $\operatorname{dim} J^{\#}(K) \geq \operatorname{Tait}(K)$

Some Results and Questions

- One inequality of the conjecture is true, namely, if K is planar then $\operatorname{dim} J^{\#}(K) \geq \operatorname{Tait}(K)$
- How is $J^{\#}(K)$ related to $\operatorname{Tait}(K)$?

Some Results and Questions

- One inequality of the conjecture is true, namely, if K is planar then $\operatorname{dim} J^{\#}(K) \geq \operatorname{Tait}(K)$
- How is $J^{\#}(K)$ related to $\operatorname{Tait}(K)$?
- What properties does $J^{\#}(K)$ satisfy?

Maps induced by foam cobordisms
Foam cobordisms

$$
\left([0,1] \times S^{3}, \Sigma\right):\left(S^{3}, K_{0}\right) \rightarrow\left(S^{3}, K_{1}\right)
$$

induce linear transformations

$$
J^{\#}(\Sigma): J^{\#}\left(K_{0}\right) \rightarrow J^{\#}\left(K_{1}\right)
$$

Bigon Relations
$\operatorname{dim} J^{\#}(K)=2 \operatorname{dim} J^{\#}\left(K^{\prime}\right)$

Triangle Relations

$$
J^{\#}(K) \simeq J^{\#}\left(K^{\prime}\right)
$$

Square Relations

$$
J^{\#}(K) \simeq J^{\#}\left(K^{\prime}\right) \oplus J^{\#}\left(K^{\prime \prime}\right)
$$

Tait Colorings and $\pi_{1}\left(S^{3} \backslash K\right)$

Tait coloring of $K \Longleftrightarrow$ (group) homomorphism

$$
\rho: \pi_{1}\left(S^{3} \backslash K\right) \rightarrow V_{4}
$$

sending the m_{e} to elements of order 2 (strictly)

Tait Colorings and $\pi_{1}\left(S^{3} \backslash K\right)$

Since V_{4} is abelian $\rho: \pi_{1}\left(S^{3} \backslash K\right) \rightarrow V_{4}$ is the same as

$$
\rho: H_{1}\left(S^{3} \backslash K\right) \rightarrow V_{4}
$$

Tait Colorings and $\pi_{1}\left(S^{3} \backslash K\right)$

Since V_{4} is abelian $\rho: \pi_{1}\left(S^{3} \backslash K\right) \rightarrow V_{4}$ is the same as

$$
\rho: H_{1}\left(S^{3} \backslash K\right) \rightarrow V_{4}
$$

If e_{1}, e_{2}, e_{3} meet at a vertex then in $H_{1}\left(S^{3} \backslash K\right)$

$$
\left[m_{e_{1}}\right]+\left[m_{e_{2}}\right]+\left[m_{e_{3}}\right]=0
$$

Tait Colorings and $\pi_{1}\left(S^{3} \backslash K\right)$

Since V_{4} is abelian $\rho: \pi_{1}\left(S^{3} \backslash K\right) \rightarrow V_{4}$ is the same as

$$
\rho: H_{1}\left(S^{3} \backslash K\right) \rightarrow V_{4}
$$

If e_{1}, e_{2}, e_{3} meet at a vertex then in $H_{1}\left(S^{3} \backslash K\right)$

$$
\left[m_{e_{1}}\right]+\left[m_{e_{2}}\right]+\left[m_{e_{3}}\right]=0
$$

SO

$$
\rho\left(m_{e_{1}}\right) \rho\left(m_{e_{2}}\right) \rho\left(m_{e_{3}}\right)=1_{3 \times 3}
$$

i.e, $\rho\left(m_{e_{1}}\right), \rho\left(m_{e_{2}}\right), \rho\left(m_{e_{3}}\right)$ must be given different colors!!!

Tait(unknot)

- $\pi_{1}\left(S^{3} \backslash\right.$ unknot $)=\mathbb{Z}$ so

$$
\rho: \mathbb{Z} \rightarrow V_{4}=\{1, R, G, B\}
$$

is completely specified by

$$
\rho(1)=\rho(m)
$$

Tait(unknot)

- $\pi_{1}\left(S^{3} \backslash\right.$ unknot $)=\mathbb{Z}$ so

$$
\rho: \mathbb{Z} \rightarrow V_{4}=\{1, R, G, B\}
$$

is completely specified by

$$
\rho(1)=\rho(m)
$$

- Since $\rho(m)$ cannot be the identity there are 3 possible choices so

$$
\operatorname{Tait}(u n k n o t)=3
$$

Construction of $J^{\#}(K)$

$J^{\#}(K)$ is constructed as the homology groups of a chain complex

$$
\left(C_{\bullet}, \partial_{\bullet}\right) \Longrightarrow J^{\#}(K)=\frac{\operatorname{ker} \partial_{\bullet}}{\operatorname{im} \partial_{\bullet}}
$$

built from the character variety of K

$$
\mathcal{R}^{\#}(K)=\begin{array}{r}
\left\{\rho: \pi_{1}\left(S^{3} \backslash K\right) \rightarrow S O(3) \mid\right. \\
\left.\rho\left(m_{e}\right) \text { has order } 2 \text { for all edges } e\right\}
\end{array}
$$

Morse Homology

Morse Homology of f

$$
0 \rightarrow^{\partial_{3}} \underbrace{C_{2}}_{\mathbb{F}_{2}[N]} \rightarrow^{\partial_{2}} \underbrace{C_{1}}_{0} \rightarrow^{\partial_{1}} \underbrace{C_{0}}_{\mathbb{F}_{2}[S]} \rightarrow^{\partial_{0}} 0
$$

Morse Homology of f

$$
0 \rightarrow^{\partial_{3}} \underbrace{C_{2}}_{\mathbb{F}_{2}[N]} \rightarrow^{\partial_{2}} \underbrace{C_{1}}_{0} \rightarrow^{\partial_{1}} \underbrace{C_{0}}_{\mathbb{F}_{2}[S]} \rightarrow^{\partial_{0}} 0
$$

$$
H_{2}\left(f, S^{2} ; \mathbb{F}_{2}\right)=\frac{\operatorname{ker} \partial_{2}}{\operatorname{im} \partial_{3}}=\operatorname{ker} \partial_{2}=\mathbb{F}_{2}
$$

Morse Homology of f

$$
0 \rightarrow^{\partial_{3}} \underbrace{C_{2}}_{\mathbb{F}_{2}[N]} \rightarrow^{\partial_{2}} \underbrace{C_{1}}_{0} \rightarrow^{\partial_{1}} \underbrace{C_{0}}_{\mathbb{F}_{2}[S]} \rightarrow^{\partial_{0}} 0
$$

$$
\begin{array}{r}
H_{2}\left(f, S^{2} ; \mathbb{F}_{2}\right)=\frac{\operatorname{ker} \partial_{2}}{i m \partial_{3}}=\operatorname{ker} \partial_{2}=\mathbb{F}_{2} \\
H_{1}\left(f, S^{2} ; \mathbb{F}_{2}\right)=\frac{\operatorname{ker} \partial_{1}}{\operatorname{im} \partial_{2}}=0
\end{array}
$$

Morse Homology of f

$$
0 \rightarrow^{\partial_{3}} \underbrace{C_{2}}_{\mathbb{F}_{2}[N]} \rightarrow^{\partial_{2}} \underbrace{C_{1}}_{0} \rightarrow^{\partial_{1}} \underbrace{C_{0}}_{\mathbb{F}_{2}[S]} \rightarrow^{\partial_{0}} 0
$$

$$
H_{2}\left(f, S^{2} ; \mathbb{F}_{2}\right)=\frac{\operatorname{ker} \partial_{2}}{\operatorname{im} \partial_{3}}=\operatorname{ker} \partial_{2}=\mathbb{F}_{2}
$$

$$
H_{1}\left(f, S^{2} ; \mathbb{F}_{2}\right)=\frac{\operatorname{ker} \partial_{1}}{\operatorname{im} \partial_{2}}=\operatorname{ker} \partial_{1}=0
$$

$$
H_{0}\left(f, S^{2} ; \mathbb{F}_{2}\right)=\frac{\operatorname{ker} \partial_{0}}{\operatorname{im} \partial_{1}}=\operatorname{ker} \partial_{0}=\mathbb{F}_{2}
$$

Morse Homology of f

$$
0 \rightarrow^{\partial_{3}} \underbrace{C_{2}}_{\mathbb{F}_{2}[N]} \rightarrow^{\partial_{2}} \underbrace{C_{1}}_{0} \rightarrow^{\partial_{1}} \underbrace{C_{0}}_{\mathbb{F}_{2}[S]} \rightarrow^{\partial_{0}} 0
$$

$$
H_{2}\left(f, S^{2} ; \mathbb{F}_{2}\right)=\frac{\operatorname{ker} \partial_{2}}{\operatorname{im} \partial_{3}}=\operatorname{ker} \partial_{2}=\mathbb{F}_{2}
$$

$$
H_{1}\left(f, S^{2} ; \mathbb{F}_{2}\right)=\frac{\operatorname{ker} \partial_{1}}{\operatorname{im} \partial_{2}}=\operatorname{ker} \partial_{1}=0
$$

$$
H_{0}\left(f, S^{2} ; \mathbb{F}_{2}\right)=\frac{\operatorname{ker} \partial_{0}}{\operatorname{im} \partial_{1}}=\operatorname{ker} \partial_{0}=\mathbb{F}_{2}
$$

$$
H_{\bullet}\left(f, S^{2} ; \mathbb{F}_{2}\right) \simeq H \cdot\left(S^{2} ; \mathbb{F}_{2}\right)
$$

Morse Homology of g

$$
0 \rightarrow^{\partial_{3}} \underbrace{C_{2}}_{\mathbb{F}_{2}\left[N_{1}\right] \oplus \mathbb{F}_{2}\left[N_{2}\right]} \rightarrow^{\partial_{2}} \underbrace{C_{1}}_{\mathbb{F}_{2}[P]} \rightarrow^{\partial_{1}} \underbrace{C_{0}}_{\mathbb{F}_{2}[S]} \rightarrow^{\partial_{0}} 0
$$

Morse Homology of $g(\bmod 2)$

$\partial_{2}\left[N_{1}\right]=[P] \quad \partial_{1}[P]=2[S]=0 \quad \partial_{0}[S]=0$
$\partial_{2}\left[N_{2}\right]=[P]$

Morse Homology of $g(\bmod 2)$

$$
\begin{array}{lll}
\partial_{2} N_{1}=P & \partial_{1} P=2 S=0 & \partial_{0} S=0 \\
\partial_{2} N_{2}=P &
\end{array}
$$

$$
\begin{array}{r}
H_{2}\left(g, S^{2} ; \mathbb{F}_{2}\right)=\frac{\operatorname{ker} \partial_{2}}{\operatorname{im} \partial_{3}}=\mathbb{F}_{2} \\
H_{1}\left(g, S^{2} ; \mathbb{F}_{2}\right)=\frac{\operatorname{ker} \partial_{1}}{\operatorname{im} \partial_{2}}=0 \\
H_{0}\left(g, S^{2} ; \mathbb{F}_{2}\right)=\frac{\operatorname{ker} \partial_{0}}{\operatorname{im} \partial_{1}}=\mathbb{F}_{2}
\end{array}
$$

Same answer as before!

Ingredients for a Morse Homology

- A real valued function $f: M \rightarrow \mathbb{R}$

Ingredients for a Morse Homology

- A real valued function $f: M \rightarrow \mathbb{R}$
- Chain complex is generated by $\operatorname{Crit}(f)$: these solve the P.D.E

$$
\frac{\partial f}{\partial x_{1}}=\frac{\partial f}{\partial x_{2}}=\cdots=\frac{\partial f}{\partial x_{n}}=0
$$

Ingredients for a Morse Homology

- A real valued function $f: M \rightarrow \mathbb{R}$
- Chain complex is generated by $\operatorname{Crit}(f)$: these solve the P.D.E

$$
\frac{\partial f}{\partial x_{1}}=\frac{\partial f}{\partial x_{2}}=\cdots=\frac{\partial f}{\partial x_{n}}=0
$$

- The differential ∂ is build from flow lines $\gamma(t)$ of the vector field $-\operatorname{grad} f: \frac{d \gamma}{d t}=-\operatorname{grad} f(\gamma(t))$

Morse-Bott Situation

Morse-Bott Situation

Crit (f) now consists of submanifolds, and the homology of the manifold can still be recovered modifying the previous construction!

Idea behind $J^{\#}(K)$: Floer Homology

- On a 3-manifold Y (like $Y=S^{3} \backslash K$), the representations

$$
\rho: \pi_{1}(Y) \rightarrow S O(3)
$$

can be interpreted as the critical points of a functional $f=C S$ which plays the role of a Morse function!

Idea behind $J^{\#}(K)$: Floer Homology

- On a 3-manifold Y (like $Y=S^{3} \backslash K$), the representations

$$
\rho: \pi_{1}(Y) \rightarrow S O(3)
$$

can be interpreted as the critical points of a functional $f=C S$ which plays the role of a Morse function!

Idea behind $J^{\#}(K)$: Floer Homology

- On a 3-manifold Y (like $Y=S^{3} \backslash K$), the representations

$$
\rho: \pi_{1}(Y) \rightarrow S O(3)
$$

can be interpreted as the critical points of a functional $f=C S$ which plays the role of a Morse function!

- Then one can try to mimic the construction of the Morse Homology groups using $C S$ and the "gradient-flow lines" determined by $-\operatorname{grad} C S$

Idea behind $J^{\#}(K)$: Floer Homology

- On a 3-manifold Y (like $Y=S^{3} \backslash K$), the representations $\rho: \pi_{1}(Y) \rightarrow S O(3)$ can be interpreted as the critical points of a functional $f=C S$ which plays the role of a Morse function!
- Then one can try to mimic the construction of the Morse Homology groups using $C S$ and the "gradient-flow lines" determined by $-\operatorname{grad} C S$
- $H_{\bullet}\left(C S, Y ; \mathbb{F}_{2}\right)$ no longer gives $H_{\bullet}\left(Y ; \mathbb{F}_{2}\right)$, but rather new and interesting topological invariants of Y !

$\underline{U(1)}$ Chern-Simons Theory

$C S:\{$ vector fields on $Y\} \rightarrow \mathbb{R}$

$$
\mathbf{A} \rightarrow \int_{Y} \mathbf{A} \cdot(\nabla \times \mathbf{A}) d v o l_{Y}
$$

$\underline{U(1)}$ Chern-Simons Theory

$C S:\{$ vector fields on $Y\} \rightarrow \mathbb{R}$

$$
\mathbf{A} \rightarrow \int_{Y} \mathbf{A} \cdot(\nabla \times \mathbf{A}) \operatorname{dvol}_{Y}
$$

Modulo integration by parts arguments

$$
\begin{aligned}
& \mathcal{D}_{\mathbf{a}} C S(A) \\
= & \lim _{t \rightarrow 0} \frac{C S(\mathbf{A}+t \mathbf{a})-C S(A)}{t} \\
= & 2 \int_{Y} \mathbf{a} \cdot(\nabla \times \mathbf{A}) d \operatorname{vol}_{Y}
\end{aligned}
$$

$\underline{U(1)}$ Chern-Simons Theory

$$
\mathcal{D}_{\mathbf{a}} C S(A)=0 \quad \forall \mathbf{a} \Longleftrightarrow \nabla \times \mathbf{A}=\mathbf{0}
$$

so

$$
\operatorname{Crit}(C S)=\{\mathbf{A} \in \mathcal{X}(Y) \mid \nabla \times \mathbf{A}=\mathbf{0}\}
$$

Holonomy Correspondence for $U(1)$

- Given $\mathbf{A} \in \operatorname{Crit}(C S)$, we will produce a homomorphism

$$
\mathrm{Hol}_{\mathbf{A}}: \pi_{1}\left(Y, y_{0}\right) \rightarrow U(1)
$$

Holonomy Correspondence for $U(1)$

- Given $\mathbf{A} \in \operatorname{Crit}(C S)$, we will produce a homomorphism

$$
\mathrm{Hol}_{\mathbf{A}}: \pi_{1}\left(Y, y_{0}\right) \rightarrow U(1)
$$

- In other words, we have a map

Hol : $\operatorname{Crit}(C S) \rightarrow \mathcal{R}(Y, U(1))=\operatorname{hom}\left(\pi_{1}(Y), U(1)\right)$

Holonomy Correspondence for $U(1)$

- Given $\mathbf{A} \in \operatorname{Crit}(C S)$, we will produce a homomorphism

$$
\mathrm{Hol}_{\mathbf{A}}: \pi_{1}\left(Y, y_{0}\right) \rightarrow U(1)
$$

- In other words, we have a map

Hol : $\operatorname{Crit}(C S) \rightarrow \mathcal{R}(Y, U(1))=\operatorname{hom}\left(\pi_{1}(Y), U(1)\right)$

Holonomy Correspondence for $U(1)$

$\mathrm{Hol}_{\mathbf{A}}: \pi_{1}\left(Y, y_{0}\right) \rightarrow U(1)$

$$
\gamma \rightarrow e^{i \int_{\gamma} \mathbf{A} \cdot d \mathbf{r}}
$$

Holonomy Correspondence for $U(1)$

$$
\begin{array}{r}
\operatorname{Hol}_{\mathbf{A}}: \pi_{1}\left(Y, y_{0}\right) \rightarrow U(1) \\
\gamma \rightarrow e^{i \int_{\gamma} \mathbf{A} \cdot d \mathbf{r}}
\end{array}
$$

That this is independent of the representative of $[\gamma] \in \pi_{1}(Y, y)$ uses Stokes theorem and the fact that $\nabla \times \mathbf{A}=\mathbf{0}$

Holonomy Correspondence for $U(1)$

- The holonomy correspondence says that Hol is reversible, in particular, every
$\rho \in \operatorname{hom}\left(\pi_{1}(Y), U(1)\right)$ can be written as

$$
\rho=\mathrm{Hol}_{\mathbf{A}}
$$

for some $\mathbf{A} \in \mathcal{X}(Y)$, which means that ρ "solves" the P.D.E

$$
\nabla \times \mathbf{A}=\mathbf{0}
$$

Back to the unknot o

$J^{\#}(\circ)$ is the homology with critical set

$$
\begin{aligned}
& \mathcal{R}^{\#}(\circ) \\
= & \left\{\rho: \pi_{1}\left(S^{3} \backslash \circ\right) \rightarrow S O(3) \mid \rho\left(m_{e}\right) \text { has order } 2\right\}
\end{aligned}
$$

Back to the unknot o

$J^{\#}(\circ)$ is the homology with critical set

$$
\begin{aligned}
& \mathcal{R}^{\#}(\circ) \\
= & \left\{\rho: \pi_{1}\left(S^{3} \backslash \circ\right) \rightarrow S O(3) \mid \rho\left(m_{e}\right) \text { has order } 2\right\} \\
= & \{\rho: \mathbb{Z} \rightarrow S O(3) \mid \rho(1) \text { has exactly order } 2\}
\end{aligned}
$$

Back to the unknot o

$J^{\#}(\circ)$ is the homology with critical set

$$
\begin{aligned}
& \mathcal{R}^{\#}(\circ) \\
= & \left\{\rho: \pi_{1}\left(S^{3} \backslash \circ\right) \rightarrow S O(3) \mid \rho\left(m_{e}\right) \text { has order } 2\right\} \\
= & \{\rho: \mathbb{Z} \rightarrow S O(3) \mid \rho(1) \text { has exactly order } 2\} \\
= & \{\text { rotation along about an axis by } 180 \text { degrees }\}
\end{aligned}
$$

Back to the unknot o

$J^{\#}(\circ)$ is the homology with critical set

$$
\begin{aligned}
& \mathcal{R}^{\#}(\circ) \\
= & \left\{\rho: \pi_{1}\left(S^{3} \backslash \circ\right) \rightarrow S O(3) \mid \rho\left(m_{e}\right) \text { has order } 2\right\} \\
= & \{\rho: \mathbb{Z} \rightarrow S O(3) \mid \rho(1) \text { has exactly order } 2\} \\
= & \{\text { rotation along about an axis by } 180 \text { degrees }\} \\
= & \mathbb{S}^{2} / \mathbb{Z}_{2}
\end{aligned}
$$

Back to the unknot o

$J^{\#}(\circ)$ is the homology with critical set

$$
\begin{aligned}
& \mathcal{R}^{\#}(\circ) \\
= & \left\{\rho: \pi_{1}\left(S^{3} \backslash \circ\right) \rightarrow S O(3) \mid \rho\left(m_{e}\right) \text { has order } 2\right\} \\
= & \{\rho: \mathbb{Z} \rightarrow S O(3) \mid \rho(1) \text { has exactly order } 2\} \\
= & \{\text { rotation along about an axis by } 180 \text { degrees }\} \\
= & \mathbb{S}^{2} / \mathbb{Z}_{2} \\
= & \mathbb{R}^{2}
\end{aligned}
$$

Back to the unknot o

$J^{\#}(0)$ is the homology with critical set

$$
\begin{aligned}
& \mathcal{R}^{\#}(\circ) \\
= & \left\{\rho: \pi_{1}\left(S^{3} \backslash \circ\right) \rightarrow S O(3) \mid \rho\left(m_{e}\right) \text { has order } 2\right\} \\
= & \{\rho: \mathbb{Z} \rightarrow S O(3) \mid \rho(1) \text { has exactly order } 2\} \\
= & \{\text { rotation along about an axis by } 180 \text { degrees }\} \\
= & \mathbb{S}^{2} / \mathbb{Z}_{2} \\
= & \mathbb{R}^{2}
\end{aligned}
$$

this is Morse-Bott!!!

Back to the unknot o

In a nutshell, one can arrange things so that

$$
\begin{aligned}
& J^{\#}(\circ) \\
= & H \bullet\left(\mathbb{R P}^{2} ; \mathbb{Z}_{2}\right)
\end{aligned}
$$

Back to the unknot o

In a nutshell, one can arrange things so that

$$
\begin{aligned}
& J^{\#}(\circ) \\
= & H \cdot\left(\mathbb{R P}^{2} ; \mathbb{Z}_{2}\right) \\
= & \mathbb{Z} / 2 \oplus \mathbb{Z} / 2 \oplus \mathbb{Z} / 2
\end{aligned}
$$

Back to the unknot o

In a nutshell, one can arrange things so that

$$
\begin{aligned}
& J^{\#}(\circ) \\
= & H_{\bullet}\left(\mathbb{R} \mathbb{P}^{2} ; \mathbb{Z}_{2}\right) \\
= & \mathbb{Z} / 2 \oplus \mathbb{Z} / 2 \oplus \mathbb{Z} / 2
\end{aligned}
$$

so

$$
\operatorname{dim} J^{\#}(\circ)=3=\operatorname{Tait}(\circ)
$$

Thank you!

https://community.wolfram.com/groups/-/m/t/1078687

