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Tait’s Equivalence

Theorem. The four-color theorem is equivalent to
the statement: every bridgeless, trivalent, planar
graph K admits a Tait coloring.
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Tait Colorings and the Klein 4-Group V4



Webs

We want to consider the embedding of a graph K
in R3 (or S3)

p 2 K has a neighborhood Y or �
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Kronheimer and Mrowka’s Strategy

Theorem. J#(K) is non-zero if and only if K
has no embedded bridge.

Conjecture. If K is planar, i.e, K ⇢ R2 ⇢ R3,
then dim J#(K) = Tait(K)

Remark. • A bridgeless, planar, trivalent web K
has J#(K) 6= 0 and if the conjecture is true, then
Tait(K) 6= 0, implying the 4-color theorem.
• The non-vanishing result uses Gabai’s theory of
sutured manifolds
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Some Results and Questions

• One inequality of the conjecture is true, namely,
if K is planar then dim J#(K) � Tait(K)

• How is J#(K) related to Tait(K)?
• What properties does J#(K) satisfy?



Maps induced by foam cobordisms

Foam cobordisms

([0, 1]⇥ S3,⌃) : (S3,K0) ! (S3,K1)

induce linear transformations

J#(⌃) : J#(K0) ! J#(K1)



Bigon Relations

dim J#(K) = 2 dim J#(K 0)



Triangle Relations

J#(K) ' J#(K 0)



Square Relations

J#(K) ' J#(K 0)� J#(K 00)



Tait Colorings and ⇡1(S3\K)

Tait coloring of K () (group) homomorphism

⇢ : ⇡1(S
3\K) ! V4

sending the me to elements of order 2 (strictly)
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Tait Colorings and ⇡1(S3\K)

Since V4 is abelian ⇢ : ⇡1(S3\K) ! V4 is the
same as

⇢ : H1(S
3\K) ! V4

If e1, e2, e3 meet at a vertex then in H1(S3\K)

[me1 ] + [me2 ] + [me3 ] = 0

so
⇢(me1)⇢(me2)⇢(me3) = 13⇥3

i.e, ⇢(me1), ⇢(me2), ⇢(me3) must be given
different colors!!!



Tait(unknot)

• ⇡1(S3\unknot) = Z so

⇢ : Z ! V4 = {1, R,G,B}

is completely specified by

⇢(1) = ⇢(m)



Tait(unknot)

• ⇡1(S3\unknot) = Z so

⇢ : Z ! V4 = {1, R,G,B}

is completely specified by

⇢(1) = ⇢(m)

• Since ⇢(m) cannot be the identity there are 3
possible choices so

Tait(unknot) = 3



Construction of J#(K)

J#(K) is constructed as the homology groups of
a chain complex

(C•, @•) =) J#(K) =
ker @•
im@•

built from the character variety of K

R#(K) = {⇢ : ⇡1(S
3\K) ! SO(3) |

⇢(me) has order 2 for all edges e}



Morse Homology
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Morse Homology of f

0 !@3 C2|{z}
F2[N ]

!@2 C1|{z}
0

!@1 C0|{z}
F2[S]

!@0 0

H2(f, S
2;F2) =

ker @2
im@3

= ker @2 = F2

H1(f, S
2;F2) =

ker @1
im@2

= ker @1 = 0

H0(f, S
2;F2) =

ker @0
im@1

= ker @0 = F2

H•(f, S
2;F2) ' H•(S

2;F2)



Morse Homology of g

0 !@3 C2|{z}
F2[N1]�F2[N2]

!@2 C1|{z}
F2[P ]

!@1 C0|{z}
F2[S]

!@0 0



Morse Homology of g (mod 2)

@2[N1] = [P ] @1[P ] = 2[S] = 0 @0[S] = 0

@2[N2] = [P ]



Morse Homology of g (mod 2)

@2N1 = P @1P = 2S = 0 @0S = 0

@2N2 = P

H2(g, S
2;F2) =

ker @2
im@3

= F2

H1(g, S
2;F2) =

ker @1
im@2

= 0

H0(g, S
2;F2) =

ker @0
im@1

= F2

Same answer as before!
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Ingredients for a Morse Homology

• A real valued function f : M ! R
• Chain complex is generated by Crit(f): these

solve the P.D.E

@f

@x1
=

@f

@x2
= · · · = @f

@xn
= 0

• The differential @ is build from flow lines �(t) of
the vector field �gradf : d�

dt = �gradf(�(t))



Morse-Bott Situation



Morse-Bott Situation

Crit(f) now consists of submanifolds, and the
homology of the manifold can still be recovered
modifying the previous construction!
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Idea behind J#(K): Floer Homology

• On a 3-manifold Y (like Y = S3\K), the
representations ⇢ : ⇡1(Y ) ! SO(3) can be
interpreted as the critical points of a functional
f = CS which plays the role of a Morse
function!

• Then one can try to mimic the construction of
the Morse Homology groups using CS and the
“gradient-flow lines” determined by �gradCS

• H•(CS, Y ;F2) no longer gives H•(Y ;F2), but
rather new and interesting topological invariants
of Y !



U(1) Chern-Simons Theory
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A !
Z

Y
A · (r⇥A)dvolY



U(1) Chern-Simons Theory

CS :{vector fields on Y } ! R

A !
Z

Y
A · (r⇥A)dvolY

Modulo integration by parts arguments

DaCS(A)

= lim
t!0

CS(A+ ta)� CS(A)

t

=2

Z

Y
a · (r⇥A)dvolY



U(1) Chern-Simons Theory

DaCS(A) = 0 8a () r⇥A = 0

so

Crit(CS) = {A 2 X (Y ) | r⇥A = 0}
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• Given A 2 Crit(CS), we will produce a
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Holonomy Correspondence for U(1)

HolA : ⇡1(Y, y0) ! U(1)

� ! ei
R
� A·dr

That this is independent of the representative of
[�] 2 ⇡1(Y, y) uses Stokes theorem and the fact
that r⇥A = 0



Holonomy Correspondence for U(1)

• The holonomy correspondence says that Hol
is reversible, in particular, every
⇢ 2 hom(⇡1(Y ), U(1)) can be written as

⇢ = HolA

for some A 2 X (Y ), which means that ⇢
“solves” the P.D.E

r⇥A = 0
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Back to the unknot �
J#(�) is the homology with critical set

R#(�)
={⇢ : ⇡1(S

3\�) ! SO(3) | ⇢(me) has order 2}
={⇢ : Z ! SO(3) | ⇢(1) has exactly order 2}
={rotation along about an axis by 180 degrees}
=S2/Z2

=RP2

this is Morse-Bott!!!
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Back to the unknot �
In a nutshell, one can arrange things so that

J#(�)
=H•

�
RP2;Z2

�

=Z/2� Z/2� Z/2

so
dim J#(�) = 3 = Tait(�)



Thank you!

https://community.wolfram.com/groups/-/m/t/1078687




