
MATH 251, Mariano Echeverria

Optimization and Lagrange Multipliers

This material corresponds roughly to sections 14.7 and 14.8 in the book.

Taylor’s Formula:
Let T (x, y, z) be a scalar field and consider a small displacement 4r = (4x,4y,4z).
Suppose T is of class C3, that is, T has partial derivatives of at least third order, each
of them being continuous. Then Taylor’s formula is

T (x+4x, y +4y, z +4z)= T (x, y, z)+
∂T (x, y, z)

∂x
4x+

∂T (x, y, z)

∂y
4y + ∂T (x, y, z)

∂z
4z

+
1

2

(
∂2T (x, y, z)

∂x2
(4x)2 + ∂2T (x, y, z)

∂y2
(4y)2 + ∂2T (x, y, z)

∂z2
(4z)2

)
+
1

2

(
2
∂2T (x, y)

∂x∂y
4x4y + 2

∂2T (x, y)

∂x∂z
4x4z + 2

∂2T (x, y)

∂y∂z
4y4z

)
+R2(4r)

where
lim
4r−→0

R2 (4r)∣∣∣4r
∣∣∣2 = 0 (1)

More succinctly, we can write

T (r+4r) = T (r) +∇T (r)4r+
1

2
(4r)T HT (r)4r+R2 (4r) (2)

Where we have represented4r as a column vector (instead of a row vector) and HT (r)
is the Hessian Hessian of the scalar field

HT =


∂2T
∂x2

∂2T
∂x∂y

∂2T
∂x∂z

∂2T
∂x∂y

∂2T
∂y2

∂2T
∂y∂z

∂2T
∂x∂z

∂2T
∂y∂z

∂2T
∂z2

 (3)

For those acquainted with linear algebra, notice that HT is a symmetric matrix.

1



Critical points and Relative Extrema of a function T (x, y):

ë A critical point of T is a point (a, b) in the domain of T such that

∂T

∂x
(a, b) = 0 and

∂T

∂y
(a, b) = 0 (4)

that is, ∇T (a, b) = 0, or at least one of the partial derivatives does not exist.

ë T has a relative maximum at (a, b) if T (x, y) ≤ T (a, b) for all points (x, y) that
are sufficiently close to (a, b). We say T (a, b) is a relative maximum value.

ë T has a relative minimum at (a, b) with relative minimum value T (a, b) if
T (x, y) ≥ T (a, b) for all points (x, y) that are sufficiently close to (a, b)

ë (a, b) is called a saddle point if it is a critical point but it is neither a relative
minimum nor a relative maximum. For example, the origin (0, 0) is a saddle
point for f(x, y) = xy + 1

The Second Derivative Test: to classify the relative extrema of a function T (x, y)

ë Find the critical points of T (x, y) by solving the system of equations

∂T

∂x
= 0 and

∂T

∂y
= 0 (5)

ë Define the discriminant

D(x, y) = TxxTyy − T 2
xy = detHT = det

(
Txx Txy
Tyx Tyy

)
(6)

Let (a, b) be a critical point of T .

1. If D(a, b) > 0 and Txx(a, b) < 0 , T (x, y) has a relative maximum at (a, b). [/]

2. If D(a, b) > 0 and Txx(a, b) > 0 , T (x, y) has a relative minimum at (a, b). [,]

3. If D(a, b) < 0 then (a, b) is a saddle point.

4. If D(a, b) = 0 the test is inconclusive.
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Problem 1. Classify the critical points of f(x, y) = x2y + 1
3y

3 − x2 − y2 + 2 using the
second derivative test.
We find the critical points of f . The partial derivatives of f are

∂f
∂x = 2xy − 2x = 2x(y − 1)

∂f
∂y = x2 + y2 − 2y = x2 + y(y − 2)

(7)

The critical points must solve the equations ∂f
∂x = ∂f

∂y = 0, that is,{
2x(y − 1) = 0

x2 + y(y − 2) = 0
(8)

The first equation has solution x = 0 or y = 1. If we substitute x = 0 into the second
equation we have

y(y − 2) = 0 =⇒ y = 0 or y = 2 (9)

and so the two critical points corresponding to x = 0 are

(0, 0), (0, 2) (10)

If y = 1 we substitute it into the second equation to obtain

x2 − 1 = 0 =⇒ x = ±1 (11)

and so the corresponding critical points are

(1, 1), (−1, 1) (12)

Now we proceed to classify these critical points. To compute the discriminant we compute
the second order derivatives

fxx = ∂
∂x (2x(y − 1)) = 2(y − 1)

fxy =
∂
∂y (2x(y − 1)) = 2x

fyy =
∂
∂y

(
x2 + y2 − 2y

)
= 2y − 2 = 2(y − 1)

(13)

The discriminant therefore is

D(x, y) = fxxfyy − f2xy

= 4(y − 1)2 − 4x2

= 4
(
(y − 1)2 − x2

) (14)

We evaluate the discriminant at each critical point and apply the second derivative test:
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Critical Point fxx(x, y) = 2(y − 1) D(x, y) = 4
(
(y − 1)2 − x2

)
Classification

(0, 0) −2 4 relative maximum
(0, 2) 2 4 relative minimum
(1, 1) 0 −4 saddle point
(−1, 1) 0 −4 saddle point

Problem 2. Show that the surface z = xy has neither a maximum nor a minimum
point.
The partial derivatives are

∂z
∂x = y

∂z
∂y = x

(15)

and so the only critical point is the origin, that is, (0, 0). To show that it is a saddle
point we compute D(0, 0). The second order partial derivatives are

∂2z
∂x2

= 0

∂2z
∂x∂y = 1

∂2z
∂y2

= 0

(16)

and so
D(x, y) = fxxfyy − f2xy = −1 (17)

In particular D(0, 0) = −1 which implies by the second derivative test that (0, 0) is a
saddle point.

Problem 3. If the product of the sines of the angles of a triangle is a maximum, show
that the triangle is equilateral.
Call α, β, γ the three angles of the triangle. The product of the sines of the angles is

sinα sinβ sin γ (18)

and since these are the angles of a triangle

α+ β + γ = π (19)
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which means that we can solve for one the angles in terms of the other two

γ = π − α− β (20)

and so the function that we are trying to maximize is

f(α, β) = sinα sinβ sin(π − α− β) (21)

Since α, β are the angles of a triangle, we can assume that 0 < α < π and 0 < β < π.
The partial derivatives of f are

∂f
∂α = cosα sinβ sin(π − α− β)− sinα sinβ cos(π − α− β)

= sinβ (cosα sin(π − (α+ β))− sinα cos(π − (α+ β)))

∂f
∂β = sinα cosβ sin(π − α− β)− sinα sinβ cos(π − α− β)

= sinα (cosβ sin(π − (α+ β))− sinβ cos(π − (α+ β)))

(22)

Before finding the critical points, we also compute the higher order derivatives

∂2f
∂α2 = −2 sinβ (sinα sin(π − (α+ β)) + cosα cos(π − (α+ β)))

∂
∂α

(
∂f
∂β

)
= cosα (cosβ sin(π − (α+ β))− sinβ cos(π − (α+ β)))

− sinα (cosβ cos(π − (α+ β)) + sinβ sin(π − (α+ β)))

∂2f
∂β2 = −2 sinα(sinβ sin(π − (α+ β)) + cosβ cos(π − (α+ β)))

(23)

The critical points must solve the equations ∂f
∂α = ∂f

∂β = 0, that is,

sinβ (cosα sin(π − (α+ β))− sinα cos(π − (α+ β))) = 0

sinα (cosβ sin(π − (α+ β))− sinβ cos(π − (α+ β))) = 0
(24)

Because we are assuming that 0 < α < π and 0 < β < π , sinα and sinβ are never 0, so
we must solve the equations

cosα sin(π − (α+ β))− sinα cos(π − (α+ β)) = 0

cosβ sin(π − (α+ β))− sinβ cos(π − (α+ β)) = 0
(25)

If we use the identities sin(θ1 − θ2) = sin θ1 cos θ2 − cos θ1 sin θ2 and cos(θ1 − θ2) =
cos θ1 cos θ2 + sin θ1 sin θ2 and so the equations are the same as

cosα sin(α+ β) + sinα cos(α+ β) = 0 (•)

cosβ sin(α+ β) + sinβ cos(α+ β) = 0 (••)
(26)
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Multiply the first equation by cosβ and the second equation by cosα to get

cosβ cosα sin(α+ β) + cosβ sinα cos(α+ β) = 0 (?)

cosα cosβ sin(α+ β) + cosα sinβ cos(α+ β) = 0 (??)
(27)

If we subtract both equations, that is , (?)− (??) to obtain

cosβ sinα cos(α+ β)− cosα sinβ cos(α+ β) = 0

=⇒ (cosβ sinα− cosα sinβ) cos(α+ β) = 0

=⇒ sin(α− β) cos(α+ β) = 0

(28)

Therefore, either sin(α − β) = 0 or cos(α + β) = 0. If cos(α + β) = 0 then α + β = π
2

and equations (•) and (••) become

cosα sin(α+ β) = 0 =⇒ cosα = 0 =⇒ α = π
2

cosβ sin(α+ β) = 0 =⇒ cosβ = 0 =⇒ β = π
2

(29)

Clearly each these equations can’t be satisfied simultaneously so the case cos(α+ β) = 0
does not occur. The case sin(α− β) = 0 implies that α = β and so (•) and (••) become
the same equal to

cosα sin(2α) + sinα cos(2α) = 0 (30)

Because sin(2α) = 2 sinα cosα and cos(2α) = cos2 α− sin2 α we have the equation

2 sinα cos2 α+ sinα cos2 α− sin3 α = 0

=⇒ 3 cos2 α− sin2 α = 0

=⇒ 3− 3 sin2 α− sin2 α = 0

=⇒ 3 = 4 sin2 α

=⇒ 3
4 = sin2 α

=⇒ sinα = ±
√
3
2

(31)

and since 0 < α < β we must have sinα =
√
3
2 which implies that α = π

3 . Therefore we
found that

α = β = γ =
π

3
(32)

and so the triangle must be equilateral. To show that it maximizes f(α, β) we compute

fxx

(π
3
,
π

3

)
= −2

(√
3

2

)(√3
2

)2

+

(
1

2

)2
 (33)
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which is negative. Similarly

D
(
π
3 ,

π
3

)
= fxx

(
π
3 ,

π
3

)
fyy
(
π
3 ,

π
3

)
−
(
fxy
(
π
3 ,

π
3

))2
= 4

(√
3
2

)2((√
3
2

)2
+
(
1
2

)2)2

−
(
−
(√

3
2

) (
1
2

)2 − (√32 )3) (34)

which is positive. Therefore, the second derivative test shows that we get a maximum,
which is what we wanted to show.

Problem 4. Find the dimensions of a box (top included) which contains a given volume
V and uses minimum material (i.e, has minimum surface area)
Let x, y, z be the sides of the box. The volume is

V = xyz (35)

and the surface area is
S = 2xy + 2xz + 2yz (36)

Since V is fixed we can solve for z and find

z =
V

xy
(37)

Substituting in the formula for S we find the function we want to minimize

S(x, y) = 2xy + 2
V

y
+ 2

V

x
(38)

The partial derivatives are
∂S
∂x = 2y − 2 V

x2

∂S
∂y = 2x− 2 V

y2

(39)

and the second order derivatives are
∂2S
∂x2

= 4 V
x3

∂
∂y

(
∂S
∂x

)
= 2

∂2S
∂y2

= 4 V
y3

(40)

The critical points must satisfy the equations

2y − 2 V
x2

= 0 =⇒ y = V
x2

=⇒ V = yx2(•)

2x− 2 V
y2

= 0 =⇒ x = V
y2

=⇒ V = xy2(••)
(41)

Setting (•) = (••) we get x = y and substituting in (•) we V = x3 and so we have the
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box must be a cube of sides x = 3
√
V . To show that it corresponds to a minimum observe

that
Sxx

(
3
√
V ,

3
√
V
)
= 4 (42)

and that
D(x, y) = 16 V 2

x3y3
− 2

=⇒ D
(

3
√
V , 3
√
V
)
= 14

(43)

and so by the second derivative test we obtain a relative minimum.

Example 5. Classify the critical points of f(x, y) = e2x+3y
(
8x2 − 6xy + 3y2

)
.

First we compute the partial derivatives of f

∂f

∂x
= 2e2x+3y

(
8x2 − 6xy + 3y2

)
+ e2x+3y (16x− 6y) (44)

∂f

∂y
= 3e2x+3y

(
8x2 − 6xy + 3y2

)
+ e2x+3y (−6x+ 6y) (45)

The critical points must have vanishing partial derivatives, in other words, they must
solve the system{

2e2x+3y
(
8x2 − 6xy + 3y2

)
+ e2x+3y (16x− 6y) = 0

3e2x+3y
(
8x2 − 6xy + 3y2

)
+ e2x+3y (−6x+ 6y) = 0

(46)

Which is equivalent to the equations{
8x2 − 6xy + 3y2 + 8x− 3y = 0

8x2 − 6xy + 3y2 − 2x+ 2y = 0
(47)

Subtracting both equations we find

10x = 5y (48)

That is
2x = y (49)

Now we substitute back in the first equation to find

8x2 − 12x2 + 12x2 + 8x− 6x = 0 (50)

Notice that this can be factorized as

x (8x+ 2) = 0 (51)

which means that either x = 0 or x = −1
4 . Since 2x = y the critical points are (0, 0)

and
(
−1

4 ,−
1
2

)
.
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To find the Hessian from
∂f
∂x = 2e2x+3y

(
8x2 − 6xy + 3y2 + 8x− 3y

)
∂f
∂y = 3e2x+3y

(
8x2 − 6xy + 3y2 − 2x+ 2y

) (52)

we can compute the second order derivatives

∂2f
∂x2

= 4e2x+3y
(
8x2 − 6xy + 3y2 + 8x− 3y

)
+ 4e2x+3y (8x− 3y + 4)

∂2f
∂x∂y = 6e2x+3y

(
8x2 − 6xy + 3y2 + 8x− 3y

)
+ 6e2x+3y (−2x+ 2y − 1)

∂2f
∂y2

= 9e2x+3y
(
8x2 − 6xy + 3y2 − 2x+ 2y

)
+ 9e2x+3y

(
−2x+ 2y + 2

3

) (53)

So the Hessian is

Hf (x, y) =

(
4e2x+3y

(
8x2 − 6xy + 3y2 + 16x− 6y + 4

)
6e2x+3y

(
8x2 − 6xy + 3y2 + 6x− y − 1

)
6e2x+3y

(
8x2 − 6xy + 3y2 + 6x− y − 1

)
9e2x+3y

(
8x2 − 6xy + 3y2 − 4x+ 4y + 2

3

) )
(54)

Evaluating at the critical point (0, 0) we have

Hf (0, 0) =

(
16 −6
−6 6

)
(55)

Since detHf (0, 0) = 60 and the first entry is positive we conclude that (0, 0) is a relative
minimum.
For the critical point

(
−1

4 ,−
1
2

)
Hf

(
−1

4
,−1

2

)
=

(
4e−2

(
7
2

)
6e−2

(
−3

2

)
6e−2

(
−3

2

)
9e−2

(
1
6

) )
(56)

Since detHf (−1
4 ,−

1
2) = e−4 (−60) < 0 we find that this corresponds to a saddle point.

Example 6. Find and classify the absolute maxima and minima of the function f(x, y) =
x2 − xy + y2 + 3x− 2y + 1 defined on the rectangle −2 ≤ x ≤ 0, 0 ≤ y ≤ 1

Whenever a continuous scalar field is defined on a bounded region which is also closed,
it will achieve an absolute maximum and absolute minimum, similar to what happened
for functions of one variable defined on a closed interval.
To find these in our case, we work first on the interior of the rectangle, where we can

find the critical points in the usual way, and then work with the four boundary pieces of
the rectangle separately.
As usual

∂f

∂x
= 2x− y + 3

∂f

∂y
= −x+ 2y − 2 (57)

so the critical points must solve {
2x− y + 3 = 0

−x+ 2y − 2 = 0
(58)

The previous system has solution
(
−4

3 ,
1
3

)
, which does belong to the rectangle. Given
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−2 −1

1

0

Figure 1: Optimization region

that
∂2f

∂x2
= 2

∂2f

∂x∂y
= −1 ∂2f

∂y2
= 2 (59)

the Hessian of the function is

Hf

(
−4

3
,
1

3

)
=

(
2 −1
−1 2

)
(60)

Since detHf = 3 and the first entry is negative this critical point is a relative minimun.
It will also be useful to notice that f

(
−4

3 ,
1
3

)
= −4

3
Now we analyze each side of the rectangle separately.

1. Side −2 ≤ x ≤ 0 y = 0: Here f(x, 0) = x2 + 3x + 1 and now we have turned
the problem into a single variable function defined on a closed interval [−2, 0].
Just as we did when we were working with the rectangle, we analyze f at the
endpoints −2, 0 and on the open interval (−2, 0). For the endpoints notice that
f(−2, 0) = −1 and f(0, 0) = 1. On the interval (−2, 0) we have ∂f(x,0)

∂x = 2x+3 so
the point x = −3

2 , y = 0 is a candidate for an absolute maximum or minimum for
the function. Notice that f

(
−3

2 , 0
)
= −5

4

2. Side x = 0 0 ≤ y ≤ 1 : Here f(0, y) = y2 − 2y + 1. On the endpoints we have
f(0, 0) = 1 and f(0, 1) = 0. For the interval (0, 1), since ∂f(0,y)

∂y = 2y − 2 we find
the critical point (0, 1), which we just computed.

3. Side −2 ≤ x ≤ 0 y = 1: Here f(x, 1) = x2 + 2x. Again f(−2, 1) = 0 and
∂f(x,1)
∂x = 2x+ 2 so there is a critical point (−1, 1) and f(−1, 1) = −1

4. Side x = −2 0 ≤ y ≤ 1 : Here f(−2, y) = y2 − 1. Since ∂f(−2,y)
∂y = 2y we find the

critical point (−2, 0) which had already analyzed.

Therefore, our list of candidates for maxima and minima are the points (with correspond-
ing values)
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(x, y) f(x, y)(
−4

3 ,
1
3

)
−4

3
(−2, 0) −1
(0, 0) 1(
−3

2 , 0
)

−5
4

(0, 1) 0
(−2, 1) 0
(−1, 1) −1

From here we can see that (0, 0) corresponds to the absolute maximum while the ab-
solute minimum coincides with the relative minimum and happens at the point

(
−4

3 ,
1
3

)
.

Optimization with and without constraints.

So far we have been dealing with functions of two variables f(x, y). However, our
previous discussion carries easily to the case of functions of more variables. For example,
if we have a function f(x, y, z), the critical points would be found by solving the system
of equations

∂f

∂x
= 0 ,

∂f

∂y
= 0,

∂f

∂z
= 0 (61)

In other words, we are interested in finding the points P = (a, b, c) where

∇f(P ) = 0 = (0, 0, 0) (62)

Notice that for such a point P , all the directional derivatives vanish, that is,

Dvf(P ) = ∇f(P )︸ ︷︷ ︸
0

·v = 0 · v = 0 (63)

Therefore, we can make the following definition of a critical point for a scalar field f :

Critical point of a scalar field (unconstrained case)
Let f(x, y, z) denote a scalar field [for example, f(x, y, z) could represent the tempera-
ture at the point (x, y, z)]. Then we say that P = (a, b, c) is a critical point of f if the
directional derivatives Dvf of f at P vanish in all possible directions, that is,

Dvf(P ) = 0 for all direction vectors v (64)

This occurs if and only if ∇f(P ) = 0, so we recover the original definition of critical
point as being one where all partial derivatives vanish.

Now suppose you are measuring a scalar field f , but you are no longer allowed to move
anywhere you want in space. More concretely, you could be trying to measure the values
of f on the surface of a planet. Remember that we think of surfaces as being given by
an equation of the form g(x, y, z) = 0. For example,

g(x, y, z) = x2 + y2 + z2 −R2 = 0 (65)

represents the sphere of radius R centered at the origin, which is a surface.
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In this new setup, we are interested in determining the local maxima and minima of
f , but relative to the points on the surface determined by the equation g(x, y, z) = 0. In
other words, if we say that the north pole is a relative minimum for the temperature f ,
what we mean is that compared to all nearby points on the surface of the Earth, then
the north pole is a relative minimum. We are no longer interested in comparing the
temperature at the north pole against the temperature at points in outer space.
This has implications for what the definition of a critical point of f should be relative

to the surface g(x, y, z) = 0. The reason there is a difference is that we are no longer
allowed to move freely in space. In other words, you can only move in ways which are
tangent to the surface of the Earth.

Remember that at each point of the surface there is a tangent plane, which encodes pre-
cisely all the direction vectors which are tangent to the surface at that point. Therefore,
we modify our definition of critical point as follows:
Critical point of a scalar field relative to some surface (constrained case)
Let f(x, y, z) denote a scalar field [for example, f(x, y, z) could represent the temper-
ature at the point (x, y, z)]. Suppose that g(x, y, z) = 0 represents the equation of a
surface and you measure f only at the points which belong to this surface.
Then we say that P = (a, b, c) is a critical point of f relative to the surface g if
P is a point on the surface and all the directional derivatives Dvf of f at P vanish in
all tangent directions to the surface, that is,

Dvf(P ) = 0 for all direction vectors v which belong to the tangent plane at P (66)

Notice that if v is a (unit) vector which belongs to the tangent plane to the surface
through point P , then as before we have that

Dv(P ) = 0 is the same as ∇f(P ) · v = 0 (67)

So ∇f(P ) must be perpendicular (orthogonal) to all the tangent vectors to the surface.
But this is precisely the property the normal vector n to a plane satisfies. Moreover, we
already know a vector with such a property. Namely, the gradient ∇g of the equation
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defining the surface is a normal vector to the tangent planes. This observation is the
main idea behind the Lagrange Multipliers method.

Key idea behind Lagrange Multiplier’s Method:
Let f(x, y, z) denote a scalar field [for example, f(x, y, z) could represent the temper-
ature at the point (x, y, z)]. Suppose that g(x, y, z) = 0 represents the equation of a
surface and you measure f only at the points which belong to this surface.
If P = (a, b, c) is a critical point of f relative to the surface g, then at the point P the
vector ∇f(P ) is a normal vector for the tangent plane to the surface passing through
P . Therefore, it must be parallel to ∇g(P ), which always is a normal vector. In other
words

∇f(P ) = λ∇g for a critical point P (68)

The constant λ is a rescaling factor and it is known as the Lagrange multiplier. We
think of f as the function we want to optimize, and g as the constraint equation.

Optimization with constraints: Lagrange’s multiplier method
To find the critical points of the function f(x, y, z) subject to the constraint g(x, y, z) =
0 we must solve the system of equations{

∇f = λ∇g
g(x, y, z) = 0

(69)

When the function f(x, y, z) is subject to the constraints g(x, y, z) = 0 and h(x, y, z) =
0 we must solve instead 

∇f = λ∇g + µ∇h
g(x, y, z) = 0

h(x, y, z) = 0

(70)
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Example 7. Find the critical points of f(x, y, z) = 2x+3y+ z subject to the constraint
g(x, y, z) = 4x2 + 3y2 + z2 − 80
First we compute the gradients of f and g

∇f = 2i+ 3j+ k (71)

∇g = 8xi+ 6yj+ 2zk (72)

From equation 69 we must solve the system
2 = λ8x

3 = λ6y

1 = λ2z

4x2 + 3y2 + z2 = 80

(73)

In order to have a solution we clearly need λ 6= 0 in which case we find

x =
1

4λ
y =

1

2λ
z =

1

2λ
(74)

substituting in the last equation

1

4λ2
+

3

4λ2
+

1

4λ2
= 80 (75)

which is the same as
4λ2 =

5

80
(76)

so the values for λ are
λ = ±1

8
(77)

and the critical points are (2, 4, 4) and (−2,−4,−4).

Example 8. Find the maximum volume of a box of rectangular base that must be inside
the ellipsoid x2

a2
+ y2

b2
+ z2

c2
= 1.

In this case we must maximize V (x, y, z) = 8xyz subject to the constaint g(x, y, z) =
x2

a2
+ y2

b2
+ z2

c2
− 1. Using the Lagrange multipliers we must solve ∇V = λ∇g , that is,

(8yz, 8xz, 8xy) = λ

(
2x

a2
,
2y

b2
,
2z

c2

)
(78)

From the system of equations 
4yz = λx

a2

4xz = λy
b2

4xy = λz
c2

x2

a2
+ y2

b2
+ z2

c2
= 1

(79)

we clearly see that x, y, z 6= 0 and λ 6= 0. We can multiply the first three equations to
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obtain

64x2y2z2 =
λ3xyz

a2b2c2
(80)

in which case
λ = 4 3

√
a2b2c2xyz (81)

Dividing the first equation by the second equation we obtain

y

x
=
b2x

a2y
(82)

Since x, y, z > 0 we conclude that

y =
b

a
x (83)

Similarly, we divide the first equation by the third one to obtain

z =
c

a
x (84)

Substituting this information in the equation for the ellipsoid we find that

3
x2

a2
= 1 (85)

Which gives us the values

x =
a√
3

y =
b√
3

z =
c√
3

(86)

and from this we conclude that the volume must be 8abc
3
√
3
.

Example 9. Find the absolute maxima and minima of the function f(x, y, z) = x+y+z
inside the region A =

{
(x, y, z) : x2 + y2 + z2 ≤ 1

}
Since this set is closed and bounded then an absolute maximum and minimum will be

achieved. First we work with the interior of the sphere, that is, the region x2+y2+z2 < 1.
Here it is easy to see that ∇f(x, y, z) = 0 has no solutions.
Therefore we can focus on the region x2+y2+z2 = 1. In this case we use the constrain

g(x, y, z) = x2 + y2 + z2 − 1 and so the method of Lagrange multipliers requires us to
solve ∇f = λ∇g, that is

(1, 1, 1) = λ (2x, 2y, 2z) (87)

We obtain the system of equations
1 = 2λx

1 = 2λy

1 = 2λz

x2 + y2 + z2 = 1

(88)

Again, λ 6= 0 so x = y = z = 1
2λ . Substituting in the last equation we find x =

± 1√
3
which means that the critical points are

(
1√
3
, 1√

3
, 1√

3

)
and

(
− 1√

3
,− 1√

3
,− 1√

3

)
.
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Since the maximum and minimum must be achieved and there are only two candidates(
1√
3
, 1√

3
, 1√

3

)
will correspond to the absolute maximum while

(
− 1√

3
,− 1√

3
,− 1√

3

)
will

correspond to the absolute minimum.

Problem 10. Find the dimensions of a box (top included) which contains a given vol-
ume V and uses minimum material (i.e, has minimum surface area) using the Lagrange
multipliers method.

Notice that we solved this problem before, but now we are going to use the Lagrange
multipliers method. The function we want to minimize is the surface area [called before
S]

f(x, y, z) = 2xy + 2xz + 2yz (89)

subject to the constraint equation

g(x, y, z) = xyz − V = 0 (90)

According to the Lagrange multiplier method, we must solve{
∇f = λ∇g
g = 0

(91)

which is equivalent to{
(2y + 2z, 2x+ 2z, 2x+ 2y) = λ(yz, xz, xy)

xyz = V
(92)

We obtain the system of equations
2y + 2z = λyz (1)

2x+ 2z = λxz (2)

2x+ 2y = λxy (3)

xyz = V (4)

(93)

To solve this system, multiply equation (1) by x, equation (2) by y , and equation (3)
by z, in order to obtain 

2xy + 2xz = λxyz (A)

2xy + 2yz = λxyz (B)

2xz + 2yz = λxyz (C)

xyz = V (4)

(94)

Now use the last equation and substitute in the other three to obtain
2xy + 2xz = λV (A)

2xy + 2yz = λV (B)

2xz + 2yz = λV (C)

(95)
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The left hand side of (A) must now equal the left hand side of (B), which means

2xy + 2xz = 2xy + 2yz

=⇒ 2xz = 2yz

=⇒ x = y

Notice that here we do not need to worry about the case where z = 0, since that is not
physically interesting. Likewise, equating (A) with (C) you will find that

y = z (96)

So we conclude that
x = y = z (97)

We can substitute back this information in equation (4) to find that

x3 = V (98)

or
x = y = z = V 1/3 (99)

which is what we found before! The main differences to observe are:

ë We treated all the equations in a symmetric fashion. That is, we did not eliminate
one of the variables in terms of the others, as we had done originally when we wrote
z = V

xy .

ë In this particular problem we did not need to find the value of λ before obtaining
the values for x, y, z. Sometimes it will be necessary to find λ first before being
able to completely solve the problem.

ë We found a critical point, but strictly speaking we do not know if this yields a
local max, local min, or neither. It is possible to classify critical points using
the Lagrange multipliers method, but we will avoid doing this since it is more
complicated.

Physical Interpretation of the Lagrange Multipliers [optional]

So far it is not clear if the Lagrange multiplier λ has any particular meaning. To discuss
the physical interpretation of the Lagrange multiplier, consider the following experiment.
Suppose you have a cannon and start launching balls from it with different initial

velocities v0. Depending on the initial velocity chosen, the ball will hit the floor at
different distances from the cannon, in other words, the range of each projectile will
depend on the initial velocity.
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In fact, if you write the initial velocity in terms of its components in the x and y
directions, that is,

v0 = (v0x, v0y) (100)

Then it is a simple physics exercise (assuming there is no friction, etc) to show that the
range R of the projectile is given as

R(v0x, v0y) =
2

g
v0xv0y (101)

where g is the acceleration due to gravity (a constant).
Now, if we were interested inmaximizing the range R, then clearly a constraint needs to

be imposed, since otherwise you could keep launching the projectiles with arbitrarily large
velocities, thereby increasing the range indefinitely. Since the total energy is conserved
in this problem, and it must equal the initial kinetic energy of the balls, it is reasonable
to impose the condition that we will only launch balls with a particular kinetic energy.
That is, our constraint equation is

C(v0x, v0y) =
1

2
m(v20x + v20y)− E = 0 (102)

where E is the kinetic energy. Therefore, we have naturally found a Lagrange multiplier
problem: we want to optimizeR subject to the constraint C = 0. According to Lagrange’s
method, we must solve {

∇R = λ∇C
C = 0

(103)

This is equivalent to 
2
gv0y = λmv0x (1)
2
gv0x = λmv0y (2)
1
2m(v20x + v20y) = E (3)

(104)

Similar to the box problem, in order to solve this system we multiply equation (1) by
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v0y, equation (2) by v0x in order to obtain
2
gv

2
0y = λmv0xv0y (A)

2
gv

2
0x = λmv0yv0x (B)

1
2m(v20x + v20y) = E (3)

(105)

We equate the left hand sides of (A) and (B) to obtain

2

g
v20y =

2

g
v20x (106)

which in this case gives
v0y = v0x (107)

Notice that the case v0y = −v0x is also possible but not interesting in this particular
situation. So we just found that the initial velocity which maximizes the range is the
one where the ball is launched at a 45◦ angle. Using equation (3) we can determine v0x
in terms of E as

v0x = v0y =

√
E

m
(108)

Again, in this case we did not find the value of λ at all, but using equation (A) and the
fact that v0x = v0y we can see that

λ =
2

mg
(109)

In order to interpret this particular expression for λ, we must do a slightly different
experiment.

Now that we know that for a given value of E, the velocity that maximizes the range
R is one where v0x = v0y, we can do an experiment where we launch projectiles with
different values of E, but all being launched at an 45◦ angle, which is the angle which
maximizes the range.
Since we are fixing the angle, the range now depends solely on the energy E chosen for

each launch. In fact, the formulas v0x = v0y =
√

E
m and R(v0x, v0y) = 2

gv0xv0y we can
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think of R as given in terms of E:

R(E) =
2

g

E

m
(110)

In particular, notice that
dR

dE
=

2

gm
= λ (111)

This is not a coincide, in fact, we can think of the Lagrange multiplier in the following
way:

Physical Meaning of the Lagrange Multiplier:
The Lagrange multiplier is the rate of change of the optimized quantity R with respect
to value of the constraint parameter E.

Lagrange Multipliers and Absolute Max/Min Problems

Suppose you want to find the absolute maxima and minima of a function f on some
bounded region R. Moreover, suppose that the boundary of the region R is given by
some equation g = 0, which is interpreted as the constraint equation.

1. Find the critical points of the function f , that is, the points where ∇f = 0. Make
a list with the critical points which belong to the region R.

2. Find the critical points given by the Lagrange multiplier problem, that is, solve
∇f = λ∇g.

3. Make a table with the critical points from steps 1. and 2., and evaluate f at all of
these points. The absolute max and min will correspond the largest and smallest
values of f that appear on this table.

Example 11. Find the absolute maxima and minima of the function f(x, y) = 8x2−2y2

when restricted to the region R on the xy plane given by the inequality x2 + y2 ≤ 1.
We follow the steps:

1. The gradient of f is ∇f = (16x,−4y) so ∇f = 0 only when x = 0 and y = 0.
Therefore, (0, 0) is the only (ordinary) critical point. Moreover, notice that (0, 0)
belongs to the region R so we will keep it.

2. We will solve ∇f = λ∇g, where g(x, y) = x2 + y2 − 1 is the equation of the circle.
Since ∇g = (2x, 2y), we must solve

16x = 2λx

−4y = 2λy

x2 + y2 = 1

(112)

The first equation is the same as 2x(8 − λ) = 0. Case x = 0: then the third
equation implies that y = ±1 and so the critical points are (0, 1) and (0,−1).
Case λ = 8: the second equation becomes −4y = 16y so y = 0, and the third
equation implies that x = ±1. Therefore, the critical points are (1, 0) and (−1, 0).
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3. The table with all the critical points is

(x, y) f(x, y) = 8x2 − 2y2

(0, 0) 0
(0, 1) −2
(0,−1) −2
(1, 0) 8
(−1, 0) 8

(113)

So (0, 1) and (0,−1) yield the absolute minimum, which is −2, while (1, 0) and
(−1, 0) yield the absolute maximum, which is 8. Notice that in this case it is not
necessary to apply the second derivative test to (0, 0), since that would only say
whether or not it yields a relative max, relative min, or a saddle point, which is
different from being an absolute max or min.
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