
MATH 251, Mariano Echeverria

Integration of Scalar Fields

This material corresponds roughly to sections 15.1, 15.2, 15.3, 12.7, 15.4, 15.6 and 16.4
in the book.

Double Integral:

ë Suppose that z = f(x, y) is a function of two variables defined over a region R
of the xy plane. We represent the double integral of z over this region as∫ ∫

R
z(x, y)dA (1)

Geometrically, we can think of it as a net volume. That is, when the surface
z(x, y) is above the xy plane we consider the volume to be positive and when
the surface z(x, y) is below the xy plane we consider the volume to be negative.
Theoretically it is defined by approximating this integral by the volume of par-
allelepipeds with rectangular base and height given by the function as show in
the figure.
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Fubini’s Theorem: suppose that z(x, y) is continuous on the rectangle

R = [a, b]× [c, d] = {(x, y) | a ≤ x ≤ b, c ≤ y ≤ d} (2)

Then the double integral
∫ ∫

R z(x, y)dA can be computed by integrating the iterated

integrals
∫ b
a

(∫ d
c z(x, y)dy

)
dx or

∫ d
c

(∫ b
a z(x, y)dx

)
dy, that is∫ ∫

R
z(x, y)dA =

∫ b

a

(∫ d

c
z(x, y)dy

)
dx =

∫ d

c

(∫ b

a
z(x, y)dx

)
dy (3)

The second and third integrals are computed similarly to how one computes partial
derivatives. For example, in

∫ b
a

(∫ d
c z(x, y)dy

)
dx one integrates with respect to y first,

treating x like a constant and then one integrates with respect to x. Likewise, for∫ d
c

(∫ b
a z(x, y)dx

)
dy one integrates with respect to x first, treating y like a constant.

For example, if z(x, y) =
√
2 + x

√
−y and R = [−2, 4] × [−4, 0] thanks to Fubini’s

Theorem∫ ∫
R

√
2 + x

√
−ydA =

∫ 4

−2

(∫ 0

−4

√
2 + x

√
−ydy

)
dx =

∫ 0

−4

(∫ 4

−2

√
2 + x

√
−ydx

)
dy

(4)
As mentioned above,

∫ 4
−2

(∫ 0
−4
√
2 + x

√
−ydy

)
dx means the following: integrate first

with respect to y pretending that x is a constant and then integrate the result of the first
integration with respect to x. If we follow the instructions then we can start by saying
that ∫ 4

−2

(∫ 0

−4

√
2 + x

√
−ydy

)
dx =

∫ 4

−2

√
2 + x

(∫ 0

−4

√
−ydy

)
dx (5)

Because
√
2 + x is being treated as a constant with respect to the innermost integral and

constants can be taken out of the integral. Since∫ 0

−4

√
−ydy = −2

3
(−y)3/2

∣∣∣∣y=0

y=−4
=

2

3
(4)3/2 =

16

3
(6)

Then ∫ 4
−2
√
2 + x

(∫ 0
−4
√
−ydy

)
dx =

∫ 4
−2
√
2 + x

(
16
3

)
dx

= 16
3

∫ 4
−2
√
2 + xdx

= 16
3

(
2
3(x+ 2)3/2

)∣∣x=4

x=−2

= 32
9 (6)

3/2

(7)

Therefore
∫ ∫

R

√
2 + x

√
−ydA = 32

9 (6)
3/2. Notice that in this iterated integral we inte-

grated first with respect to y. Thanks to Fubini’s theorem we are free to compute the
integration in the other order, that is, we can integrate first with respect to x.
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The way in which we find
∫ 0
−4

(∫ 4
−2
√
2 + x

√
−ydx

)
dy is entirely analogous to the

previous calculation. Now we are integrating first with respect to x and so we treat y as
a constant. Therefore, we can say that∫ 0

−4

(∫ 4

−2

√
2 + x

√
−ydx

)
dy =

∫ 0

−4

√
−y
(∫ 4

−2

√
2 + xdx

)
dy (8)

and now we have to find∫ 4

−2

√
2 + xdx =

(
2

3
(x+ 2)3/2

)∣∣∣∣x=4

x=−2
=

2

3
(6)3/2 (9)

and in this way ∫ 0
−4
√
−y
(∫ 4
−2
√
2 + xdx

)
dy =

∫ 0
−4
√
−y
(
2
3(6)

3/2
)
dy

= 2
3(6)

3/2
∫ 0
−4
√
−ydy

= 2
3(6)

3/2
(
16
3

)
= 32

9 (6)
3/2

(10)

and we see that we obtain the same answer.
Example 1. Find

∫ ∫
R(4− x− y)dA where R = [0, 2]× [0, 1]

Again we will compute both iterated integrals
∫ 2
0

∫ 1
0 (4−x− y)dydx and

∫ 1
0

∫ 2
0 (4−x−

y)dxdy to show that both integrals agree. In practice, however, it is only necessary to
compute only of the iterated integrals.∫ 2

0

∫ 1
0 (4− x− y)dydx =

∫ 2
0

(
4y − xy − y2

2

)∣∣∣y=1

y=0
dx

=
∫ 2
0

(
7
2 − x

)
dx

=
(
7
2x−

x2

2

)∣∣∣x=2

x=0

= 5

(11)

The second iterated integral is∫ 1
0

∫ 2
0 (4− x− y)dxdy =

∫ 1
0

(
4x− x2

2 − yx
)∣∣∣x=2

x=0
dy

=
∫ 1
0 (6− 2y) dy

=
∫ 1
0

(
6y − y2

)∣∣1
y=0

= 5

(12)
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Integration over non-rectangular regions:

ë Type I Region: suppose g1(x) and g2(x) are continuous functions on [a, b] and
the region R is defined by

R = {(x, y) | g1(x) ≤ y ≤ g2(x), a ≤ x ≤ b} (13)

Then ∫ ∫
R
f(x, y)dA =

∫ b

a

[∫ g2(x)

g1(x)
f(x, y)dy

]
dx (14)

ë Type II Region: suppose h1(y) and h2(y) are continuous functions on [c, d]
and the region R is defined by

R = {(x, y) | h1(y) ≤ x ≤ h2(y); c ≤ y ≤ d} (15)

Then ∫ ∫
R
f(x, y)dA =

∫ d

c

[∫ h2(y)

h1(y)
f(x, y)dx

]
dy (16)

For example, suppose we want to find
∫ ∫

R
sinx
x dA were R is triangle whose sides lie

down on the x axis and the lines y = x , x = 1.
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Observe that this region is simultaneously type I and type II. We start by treating it
as a type I region. In this case x takes its values on the interval [0, 1]. If we fix an x
inside this interval, then the values that y takes start at the horizontal line y = 0 and
end at the straight line y = x. Therefore the integral becomes∫ ∫

R
sinx
x dA =

∫ 1
0

∫ x
0

sinx
x dydx

=
∫ 1
0

(
sinx
x

) ∫ x
0 dydx

=
∫ 1
0

(
sinx
x

)
xdx

=
∫ 1
0 sinxdx

= − cosx|x=1
x=0

= 1− cos 1

(17)

If we treat the region as type II then we use that y takes its values on the interval [0, 1].
For a fixed y, the values x take start at x = y and end at x = 1 and so the integral can
be written as ∫ ∫

R

sinx

x
dA =

∫ 1

0

∫ 1

y

sinx

x
dxdy (18)

Notice that in this case we would need to find an antiderivative of sinx
x which is no easy

task and so from a practical point of view this integral can’t be computed. This example
shows that despite the fact that the region is both of type I and type II, it may not be
equally easy to find the corresponding iterated integrals.

Example 2. Find
∫ ∫

R xydA , where R is the region bounded by the curves
y = 0, x = 1, and y =

√
x.
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If we use the order of integration dA = dydx, then we can have to think of the region
of integration as being composed of vertical segments (the pink arrow in the figure).
Notice that these arrows all start on the x-axis (equation y = 0), and they all end on

the green curve (equation y =
√
x). Therefore the integral we must do is∫ ∫

R
xydA

=

∫ ?

?

(∫ √x
0

xydy

)
dx

We still need to determine the bounds for the exterior integral. These correspond to
smallest and largest value x takes in this region. Therefore, since 0 ≤ x ≤ 1 we have to
do the double integral ∫ ∫

R
xydA

=

∫ 1

0

(∫ √x
0

xydy

)
dx

=

∫ 1

0

(
x
y2

2
|y=
√
x

y=0

)
dx

=
1

2

∫ 1

0
x(x)dx

=
1

2

(
x3

3

)
|x=1
x=0

=
1

6

On the other hand, we can also use the order of integration dA = dxdy. In this case,
we think of the region of integration as being made of horizontal segments. They all
begin on the green curve (equation y =

√
x) and end on the blue curve (equation x = 1).

Notice that when we use the order dxdy, x is being regarded as a function of y, which
means that the equation of the green curve is x = y2 instead of y =

√
x.
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In this case we have that ∫ ∫
R
xydA

=

∫ ?

?

(∫ 1

y2
xydx

)
dy

The bounds for y are the smallest and largest value y takes in the region of integration.
Since 0 ≤ y ≤ 1 the integral we must do is∫ ∫

R
xydA

=

∫ 1

0

(∫ 1

y2
xydx

)
dy

=

∫ 1

0
y

(
x2

2

)
|x=1
x=y2 dy

=
1

2

∫ 1

0
y(1− y4)dy

=
1

2

∫ 1

0
(y − y5)dy

=
1

2
(
y2

2
− y6

6
) |y=1
y=0

=
1

2

(
3− 2

6

)
=
1

6

Example 3. Find the double integral
∫ ∫

R y
2xdA where R is the region between

the curves y = x2, x = 1, y = −x.

If we use the order of integration dA = dydx then we use vertical arrows to describe
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the region of integration, which means that∫ ∫
y2xdA

=

∫ 1

0

(∫ x2

−x
y2xdy

)
dx

=

∫ 1

0
x

(
y3

3

)
|y=x

2

y=−x dx

=
1

3

∫ 1

0
x
(
x6 + x3

)
dx

=
1

3

∫ 1

0
(x7 + x4)dx

=
1

3

(
x8

8
+
x5

5

)
|10

=
13

120

On the other hand, if we use the order of integration dA = dxdy, then we need to split
the double integral into two double integrals, since the horizontal segments can start
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from two different curves: the green and red curves. Therefore∫ ∫
y2xdA

=

∫ 1

0

(∫ 1

√
y
y2xdx

)
dy +

∫ 0

−1

(∫ 1

−y
y2xdx

)
dy

=

∫ 1

0

(∫ 1

√
y
y2xdx

)
dy +

∫ 0

−1

(∫ 1

−y
y2xdx

)
dy

=

∫ 1

0
y2
x2

2
|x=1
x=
√
y dy +

∫ 0

−1
y2
x2

2
|x=1
x=−y dy

=
1

2

∫ 1

0
y2(1− y)dy + 1

2

∫ 0

−1
y2(1− y2)dy

=
1

2

∫ 1

0
(y2 − y3)dy + 1

2

∫ 0

−1
(y2 − y4)dy

=
1

2

(
y3

3
− y4

4

)
|y=1
y=0 +

1

2

(
y3

3
− y5

5

)
|y=0
y=−1

=
1

2

(
1

3
− 1

4

)
+

1

2

(
0−

(
−1

3
+

1

5

))
=
1

2

(
1

3
− 1

4
+

1

3
− 1

5

)
=
40− 15− 12

120

=
13

120

Example 4. Find
∫ ∫

R
x+y
x+y+2dA where R is the region shown in the following figure.

−1 1

−1

1

0

We will treat this region as a type I region. In this case x takes values on the interval
[−1, 1]. For a fixed x, y takes values between either the lower left - upper left sides of the
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rhombus or the lower right - upper right sides of the rhombus. This depends on whether
x is positive or negative. Therefore, the first thing to do is find the equations of the four
lines. These are

lower left y = −x− 1
upper left y = x+ 1
lower right y = x− 1
upper right y = −x+ 1

(19)

Therefore, the integral is equal to∫ ∫
R

x+ y

x+ y + 2
dA =

∫ 0

−1

∫ x+1

−x−1

x+ y

x+ y + 2
dydx+

∫ 1

0

∫ −x+1

x−1

x+ y

x+ y + 2
dydx (20)

To find the integral we make the substitution (remember that x is constant)

u = x+ y + 2
du = dy

(21)

and so the integrals become∫ 0
−1
∫ 2x+3
1

u−2
u dudx+

∫ 1
0

∫ 3
2x+1

u−2
u dudx

=
∫ 0
−1
∫ 2x+3
1

(
1− 2

u

)
dudx+

∫ 1
0

∫ 3
2x+1

(
1− 2

u

)
dudx

=
∫ 0
−1 (2x+ 2− 2 ln(2x+ 3)) dx

+
∫ 1
0 (2− 2x− 2 (ln 3− ln(2x+ 1)) dx

(22)

Using an substitution and integration by parts we can show that∫
ln(2x+ 3)dx = 1

2(2x+ 3)(−1 + ln(2x+ 3)) + C∫
ln(2x+ 1)dx = 1

2(2x+ 1)(−1 + ln(2x+ 1)) + C
(23)

and so the last integrals equal(
x2 + 2x− (2x+ 3)(−1 + ln(2x+ 3)

)∣∣x=0

x=−1
+
(
2x− x2 − 2x ln 3 + (2x+ 1)(−1 + ln(2x+ 1)

)∣∣x=1

x=0

= −3(−1 + ln 3)− [1− 2− (1)(−1 + ln 1)]
+1− 2 ln 3 + 3(−1 + ln 3)− 1(−1 + ln 1)

= 3− 3 ln 3
+2− 2 ln 3− 3 + 3 ln 3

= 2− 2 ln 3

(24)

Problem 5. Write the double integral
∫ 2
1

∫ lnx
0 (x − 1)

√
1 + e2ydydx in the order dxdy.

Do not find the value.
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The way the integral is written, we need to find an antiderivative of
√
1 + e2y, which

is not impossible but it is somewhat tedious. Therefore, we will invert the order of
integration.
To do this notice that the largest value of y in the region of integration is ln 2 and so

the interval of integration for y is [0, ln 2]. For a fixed value of y, x starts at the curve
y = lnx, which we write as x = ey, and ends at the curve x = 2. Therefore the integral
is the same as ∫ ln 2

0

∫ 2

ey
(x− 1)

√
1 + e2ydxdy (25)

Let R be a region in the xy plane and let f be continuous and nonnegative on R.
Then the volume of the solid under a surface bounded above by z = f(x, y) and

below by R is given by

V =

∫
R

∫
f(x, y)dA (26)

Problem 6. Find the volume of the solid that lies under z = x2 + y2 and above the
square 0 ≤ x ≤ 2, −1 ≤ y ≤ 1.
The volume is

V =
∫ 2
0

∫ 1
−1(x

2 + y2)dydx

=
∫ 2
0

(
x2y + y3

3

)∣∣∣y=1

y=−1
dx

=
∫ 2
0

(
2x2 + 2

3

)
dx

=
(
2x3

3 + 2
3x
)∣∣∣x=2

x=0

= 20
3

(27)
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f f is integrable over the plane region R, then its average value over R is given by∫
R

∫
f(x, y)dA

area of R
=

∫
R

∫
f(x, y)dA∫
R

∫
dA

(28)

Problem 7. Find the average value of the function f(x, y) = e−x
2 over the plane region

R: the triangle with vertices (0, 0), (1, 0) and (1, 1).

The area of the triangle is 1
2 and so the average value is

∫ 1
0

∫ x
0 e−x

2
dydx

1
2

= 2
∫ 1
0 xe

−x2dx

=
(
−e−x2

)∣∣∣x=1

x=0

= (1− e−1)

(29)

When integrating a scalar function (like density) λ(s) along a curve r(s) , both pa-
rameterized by the arc length, we need to compute

m =

∫ L

0
λds (30)

If we use a parameterization which is not s, then we compute instead

m =

∫ b

a
λvdt (31)

where [a, b] is the interval which parameterizes the curve.

Example 8. Suppose a cable has circular shape and it has radius R, centered at the
origin. If the density of the cable is λ(x, y) = x4 + x2y2, find the total mass.
We will use the second formula, for which we will use the parameterization

r(t) = R cos ti+R sin tj (32)
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of the circle, for 0 ≤ t < 2π. In this case v =
∣∣∣v∣∣∣ = R. Since

x = R cos t y = R sin t (33)

the density as a function of t is

λ = R4 cos4 t+R4 cos2 t sin2 t = R4 cos2 t (34)

Using equation 31 we find that

m =

∫ 2π

0
R5 cos2 tdt = R5π (35)

Polar Coordinates: “official” convention

x = r cos θ y = r sin θ

r =
√
x2 + y2 tan θ =

y

x

dA = rdrdθ (36)

Polar Coordinates: Other acceptable conventions [picture]

x = r cosϕ y = r sinϕ

r =
√
x2 + y2 tan θ =

y

x

dA = rdrdϕ (37)
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ϕ
x

P[ρ,ϕ]ρ

Figure 1: Polar coordinates ρ, ϕ on the xy plane

P

ρ

x

y

ϕ

Figure 2: Polar and cartesian coordinates
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Cylindrical Coordinates: “official” convention

x = r cos θ y = r sin θ z = z

r =
√
x2 + y2 tanϕ =

y

x

dV = rdzdrdθ (38)

Cylindrical Coordinates: other acceptable conventions [picture]

x = r cosϕ y = r sinϕ z = z

r =
√
x2 + y2 tanϕ =

y

x

dV = rdzdrdϕ (39)

x

y

z

P=(x,y,z)

(0,0,z)

(x,y,0)

ρ

y

z

ϕx

Figure 3: Cartesian and cylindrical coordinates
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Spherical Coordinates: official conventions

x = ρ cos θ sinϕ y = ρ sin θ sinϕ z = ρ cosϕ

ρ =
√
x2 + y2 + z2 tan θ =

y

x
cosϕ =

z√
x2 + y2 + z2

Here 0 ≤ θ ≤ 2π and 0 ≤ ϕ ≤ π.

dV = ρ2 sinϕdρdϕdθ (40)

Spherical Coordinates: other acceptable conventions [picture]

x = r cosϕ sin θ y = r sinϕ sin θ z = r cos θ

r =
√
x2 + y2 + z2 tanϕ =

y

x
cos θ =

z√
x2 + y2 + z2

Here 0 ≤ ϕ ≤ 2π and 0 ≤ θ ≤ π.

dV = r2 sin θdrdθdϕ (41)

x

y

z

P=(x,y,z)

(0,0,z)

(x,y,0)

ρ

y

z

ϕx

r

θ

z

Figure 4: Spherical Coordinates
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Example 9. Find the triple integral∫ ∫ ∫
R
zdV (42)

where R is the region bounded by the cone z =
√
x2 + y2 and the plane z = 1.

Do the integral using cylindrical and spherical coordinates.
The region of integration is between the xy plane and the z = 1 plane, as shown on

right hand side image. Since the region of integration is symmetric about the z axis, one
can take a cross section of the region, obtained by intersecting the region with any plane
which is perpendicular to the xy plane and contains the z axis: this is the left hand side
image.
Notice that the vertical axis corresponds to the z axis, while the horizontal axis can be

regarded as representing the r axis, where r denotes the radial coordinate from cylindrical
coordinates.

Cylindrical coordinates: here finding the bounds for the order of integration dzdr
can be obtained in the same way in which we found the bounds for the order of integration
dydx when working on a non-rectangular region (z plays the role of y, while r plays the
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role of x). In cylindrical coordinates z =
√
x2 + y2 = r so∫ ∫ ∫

R
zdV

=

∫ ∫ ∫
R
zrdzdrdθ

=

∫ 2π

0

(∫ 1

0

(∫ 1

r
zrdz

)
dr

)
dθ

=

∫ 2π

0

∫ 1

0
r
z2

2
|z=1
z=r drdθ

=
1

2

∫ 2π

0

∫ 1

0
(r − r3)drdθ

=
1

2

∫ 2π

0
(
r2

2
− r4

4
) |r=1
r=0 dθ

=
1

2

(
1

2
− 1

4

)∫ 2π

0
dθ

=
π

4

On the other hand, when using spherical coordinates we have [notice that the equation
z =

√
x2 + y2 reads in spherical coordinates ρ cosφ =

√
ρ2 sin2 φ cos2 θ + ρ2 sin2 φ sin2 θ =

ρ sinφ from which we obtain φ = π/4 as one of the bounds for φ. Likewise, z = 1 reads
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ρ cosφ = 1 or ρ = 1
cosφ , which is one of the other bounds we cared about].∫ ∫ ∫

R
zdV

=

∫ ∫ ∫
R
zρ2 sinφdρdφdθ

=

∫ 2π

0

(∫ π/4

0

(∫ 1
cosφ

0
(ρ cosφ)ρ2 sinφdρ

)
dφ

)
dθ

=2π

∫ π/4

0

ρ4

4
|
ρ= 1

cosφ

ρ=0 cosφ sinφdφ

=
π

2

∫ π/4

0

cosφ sinφ

cos4 φ
dφ

=
π

2

∫ π/4

0

sinφ

cos3 φ
dφ

=
π

2

(
1

2

)
(cos−2 φ) |φ=π/4φ=0

=
π

4

 1(
1√
2

)2 − 1

12


=
π

4

Notice that to find
∫ π/4
0

sinφ
cos3 φ

dφ you can make a substitution u = cosφ, du = − sinφdφ.
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Computing surface integrals:
If a surface S is parameterized with coordinates u, v then the surface differential is

dS =
∣∣∣∂r(u, v)

∂u
× ∂r(u, v)

∂v

∣∣∣dudv (43)

and the surface integral of scalar field f is denoted as∫ ∫
S
f(u, v)dS (44)

When f = f(x, y) is a function defined on a region R inside the xy plane we can write
the previous integral as ∫ ∫

R
f(x, y)dxdy (45)

The area of the surface can be computed as

A (S) =

∫ ∫
S
dS (46)

When we are parameterizing the region R using coordinates u, v then we write dS as

dA = J(u, v)dudv (47)

where J(u, v) is the Jacobian of the parameterization (or of the change of coordinates)

J(u, v) ≡ ∂(x, y)

∂(u, v)
≡
∣∣∣ ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣ = ∣∣∣∣ xu xv
yu yv

∣∣∣∣ (48)

In this way the integral can be computed as∫ ∫
f(u, v)J(u, v)dudv (49)

As an example, if we use polar coordinates then the area differential can be written as
El diferencial de área en coordenadas polares es

dA = rdrdθ (50)

and the integral to perform can be written as∫ ∫
frdrdθ (51)
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Figure 5: Surface Integral

Figure 6: Computing a surface integral
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Example 10. Evaluate
∫ a
0

∫ √ax−x2
0

adydx√
a2−x2−y2

The idea is to compute this using polar coordinates since it simplifies the integrand,
as well as the bounds of integration. Notice that

0 ≤ x ≤ a 0 ≤ y ≤
√
ax− x2 (52)

To interpret the second inequality we square it first

0 ≤ y2 ≤ ax− x2 (53)

adding x2 to each side of the inequality we conclude that

x2 ≤ x2 + y2 ≤ ax (54)

The first inequality says that
x2 = x2 + y2 (55)

which is equivalent to y = 0.
The second inequality says that

x2 + y2 = ax (56)

Completing squares we find that (
x− a

2

)2
+ y2 =

a2

4
(57)

which is the equation of a circle centered at
(
a
2 , 0
)
with radius a

2 . Therefore, the region
of integration looks like

(0,0)
(a,0)

(a/2,0)

Now we need to find the limits with respect to the variables r, θ. From the picture

0 ≤ θ ≤ π

2
(58)

Using x2 + y2 ≤ ax we can write this as

r ≤ a cos θ (59)
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so the integral becomes∫ a

0

∫ √ax−x2
0

a√
a2 − x2 − y2

dA =

∫ π
2

0

(∫ a cos θ

0

a√
a2 − r2

rdr

)
dr (60)

Using the change of variables

u = a2 − r2 du = −2rdr (61)

we find that ∫ π
2

0

(∫ a2 sin2 θ

a2

a√
u

(
−du

2

))
dθ = a

∫ π
2

0

√
u
∣∣∣a2
a2 sin2 θ

dθ (62)

= a

∫ π
2

0
(a− a sin θ) dθ = a2 (θ + cos θ)

∣∣∣π2
0
= a2

(π
2
− 1
)

(63)

Example 11. Evaluate
∫ ∫

R

(
x−y
x+y+2

)2
dxdy where R is the region shown below.

−1 1

−1

1

0

The region is bounded by the four lines

x+ y = 1 x− y = 1
x+ y = −1 x− y = −1 (64)

This suggests making the change of variables

u = x+ y v = x− y (65)

which we rewrite as
x =

u+ v

2
y =

u− v
2

(66)

The Jacobian is

J(u, v) =
∣∣∣det( ∂x

∂u
∂x
∂v

∂y
∂u

∂y
∂v

)∣∣∣ = ∣∣∣det( 1
2

1
2

1
2 −1

2

)∣∣∣ = ∣∣∣−1

2

∣∣∣ = 1

2
(67)
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Recall that we take the absolute values to make it positive. Finally∫ ∫
R

(
x− y

x+ y + 2

)2

dA

=

∫ 1

−1

(∫ 1

−1

(
v

u+ 2

)2 1

2
du

)
dv

=

∫ 1

−1
−1

2
v2 (u+ 2)−1

∣∣∣1
−1
dv

=− 1

2

(
1

3
− 1

)∫ 1

−1
v2dv

=
1

3

v3

3

∣∣∣1
−1

=
2

9

Computation of volume:
If a region V is parameterized using coordinates u, v, w then the volume differential is

dV =
∣∣∣∂r(u, v, w)

∂u
·
(
∂r(u, v, w)

∂v
× ∂r(u, v, w)

∂w

)∣∣∣dudvdw (68)

If r = x(u, v, w)i+y(u, v, w)j+z(u, v, w)k this volume differential can also be computed
as

dV =

∣∣∣∣∣∣det
 ∂x

∂u
∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣ dudvdw ≡ |J(u, v, w)|dudvdw (69)

where J(u, v, w) is the Jacobian in three variables. We denote the integral as∫ ∫ ∫
V
f(u, v, w)dV (70)

Figure 7: Computing volume
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When the region of integration is defined by the conditions

a ≤ x ≤ b g1(x) ≤ y ≤ g2(x) h1(x, y) ≤ z ≤ h2(x, y) (71)

the integral is written as∫ b

a

(∫ g2(x)

g1(x)

(∫ h2(x,y)

h1(x,y)
F (x, y, z)dz

)
dy

)
dx (72)

with analogous formulas if the roles of x, y, z are changed.

Example 12. Find the volume of solid T limited by the paraboloids z = x2 + y2,
z = 4x2 + 4y2, the cylinder y = x2 , and the plane y = 3x.
For convenience we break the picture into two, the first one denotes the “floor” and

the “roof” for T , while the second denotes the “lateral walls”.
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Figure 8: Volume between paraboloids
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Figure 9: Region determined by the cylinder and the plane

Figure 10: Picture depicting the four surfaces at once

To find the limits of integration we also draw things on the xy plane.
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8

0

Figure 11: Region of integration on the xy plane

The curves y = x2 and y = 3x intersect when x2 = 3x, that is, x = 0, x = 3. Using
formula 72 we find that the volume is

V

=

∫ ∫ ∫
dzdydx

=

∫ 3

0

(∫ 3x

x2

(∫ 4(x2+y2)

x2+y2
dz

)
dy

)
dx

=

∫ 3

0

(∫ 3x

x2
3(x2 + y2)dy

)
dx

=

∫ 3

0

(
3x2y + y3

)
|3xx2 dx

=

∫ 3

0
3x2

(
3x− x2

)
+ 27x3 − x6dx

=

∫ 3

0
36x3 − 3x4 − x6dx

=
16767

35

Example 13. Find the volume of a sphere of radius R.
In this case we use spherical coordinates

V =

∫ ∫ ∫
dV =

∫ 2π

0

∫ π

0

∫ R

0
r2 sin θdrdθdϕ =

4

3
πR3 (73)

Example 14. Use spherical coordinates to evaluate
∫ ∫ ∫

T
dxdydz

(x2+y2+z2)3/2
, where T is the

region bounded by the spheres x2 + y2 + z2 = 4, x2 + y2 + z2 = 9 and the half-cone
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x2 + y2 − z2 = 0, z ≥ 0.
With respect to spherical coordinates the previous equations become r = 2, r = 3 and

sin2 θ = cos2 θ. These equations are independent of ϕ, so our region can be regarded as
being obtained from a slice which is rotated with respect to the z axis, so we just need
to draw a cross section.

C

From here it is clear that the limits are

2 ≤ r ≤ 3 0 ≤ θ ≤ π

4
0 ≤ ϕ ≤ 2π (74)

so the integral in spherical coordinates is∫ 2π

0

(∫ π
4

0

(∫ 3

2

r2 sin θ

r3
dr

)
dθ

)
dϕ

=2π (ln r) |32 (− cos θ) |
π
4
0

=2π

(
1− 1√

2

)
ln

(
3

2

)
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