
MATH 251, Mariano Echeverria

Curves and Geometry in Space

This material corresponds roughly to sections 12.5, 13.1, 13.2, 13.3 and 13.4 in the
book.

Equation of a line
The equation of a line l passing through point P and with direction specified by the
vector v is given by the (parametric) equation

r(t) = P + tv (1)
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Figure 1: Equation of a line through a point P and with direction vector v

Example 1. Consider the lines L1, L2 with equations

L1 : (x, y, z) = (t+ 2,�t+ 4, 2t+ 6) (2)

L2 : (x, y, z) = (�t+ 1, t+ 5.t+ 7) (3)

a) Determine the point Q where the lines intersect.
Write Q as Q = (q1, q2, q3). Since Q belongs to L1 there is a time t1 for which

(q1, q2, q3) = (t1 + 2,�t1 + 4, 2t1 + 6) (4)

Likewise, Q is in L2 so there is a time t2 such that

(q1, q2, q3) = (�t2 + 1, t2 + 5, t2 + 7) (5)
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Hence we obtain the system of equations
8
<

:

t1 + t2 = �1
�t1 � t2 = 1
2t1 � t2 = 1

(6)

Adding the first and third equations we conclude that t1 = 0 and substituting in the first
equation we find that t2 = �1. Using equation (4) we conclude that the point Q is

(q1, q2, q3) = (2, 4, 6) (7)

b) Check that if A belongs to the line L1 and B belongs to the line L2 then
�!
QA and

��!
QB are orthogonal vectors.

If A 2 L1 then there exists t1 such that A = (t1 + 2,�t1 + 4, 2t1 + 6) and if B 2 L2
there exists t2 such that B = (�t2 + 1, t2 + 5, t2 + 7)

�!
QA = A�Q = (t1 + 2,�t1 + 4, 2t1 + 6)� (2, 4, 6) = (t1,�t1, 2t1) (8)

��!
QB = B �Q = (�t2 + 1, t2 + 5, t2 + 7)� (2, 4, 6) = (�t2 � 1, t2 + 1, t2 + 1) (9)

so
�!
QA·��!QB = (t1,�t1, 2t1)·(�t2�1, t2+1, t2+1) = t1(�t2�1)�t1(t2+1)+2t1(t2+1) (10)

= �2t1(t2 + 1) + 2t1(t2 + 1) = 0 (11)
c) Let C = (3, 3, 8). Check that C belongs to the line L1.
Just take t = 1 for the equation L1 : (x, y, z) = (t+ 2,�t+ 4, 2t+ 6).
d) Find a point D on the line L2 such that the area of the triangle CQD

equals
p
18.

We already know that C and Q belong to L1 and the vector
��!
CQ = Q�C = (2, 4, 6)�

(3, 3, 8) = (�1, 1,�2) has norm
p
6. This vector serves as the base of the triangle CQD.

Since Q also belongs to L2 and the lines are orthogonal because of part b) then this
triangle must be a right triangle and the vector representing the height can taken to be��!
DQ = (2, 4, 6)� (�t+1, t+5, t+7) = (t+1,�t� 1,�t� 1), which has norm

p
3 |t+ 1|.

Therefore we need to solve the equation
p
18 =

1

2

p
6
p
3 |t+ 1| (12)

which has solutions t = 1 or t = �3. Substituting t = 1 in the line for L2 gives the point
(0, 6, 8). Notice that t = �3 would have also worked.
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Figure 2: Perpendicular lines

Example 2. Find the equation for the line L1 which goes through the points
P = (4, 6, 7) and Q = (3, 6, 9) .

We can take
��!
PQ as the direction vector for the line L1:

��!
PQ = Q� P = (3, 6, 9)� (4, 6, 7) = (�1, 0, 2) (13)

Therefore the equation for the line can be taken to be

L1 : r = (x, y, z) = P + t
��!
PQ = (4, 6, 7) + t(�1, 0, 2) (14)

Equation of a plane
The (parametric) equation of a plane passing through the point P and with direc-
tion vectors u,v is

r(t) = P + tu+ sv (15)
Another way to describe a plane is by specifying a vector n perpendicular to the plane.
In this case, if r = (x, y, z) denotes an arbitrary point on the plane, the normal
equation is

n · (r� rP ) = 0 (16)
If we write n as n = (a, b, c) and define d = n · rP , then you will see the previous
equation written as

ax+ by + cz = d (17)
The important point of this equation is that the vector n can be read from the coeffi-
cients multiplying each of the variables x, y, z on the left hand side.
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Figure 3: Vector equation for a plane

Suppose two planes have equations a1x+ b1y + c1z = d1 and a2x+ b2y + c2z = d2. If
we want to determine the intersection of the two planes (which unless they are the same
or parallel will correspond to a line), we need to solve the two equations

⇢
a1x+ b1y + c1z = d1
a2x+ b2y + c2z = d2

(18)

For example, to find the intersection between the planes x+3y�5z = 2 and 2x�3z = 0
we have to solve ⇢

x+ 3y � 5z = 2
2x� 3z = 0

(19)

which can be simplified to [substitute x = (3/2)z into the first equation]
⇢
y � 7

6z = 2
3

x� 3
2z = 0

(20)

Taking z = t we can write

(x, y, z) =

✓
3

2
t,
7

6
t+

2

3
, t

◆
=

✓
0,

2

3
, 0

◆
+ t

✓
3

2
,
7

6
, 1

◆
(21)

which is the vector equation for a line.
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Velocity of a particle:

Î If r(t) denotes the position vector of a particle at time t, then

v(t) =
dr(t)

dt
(22)

can be interpreted as the velocity of the particle at time t. It will be a vector
tangent to the curve at that point, thus generalizing the concept of the derivative
as the slope of the tangent line.

Î In practice, if we write r(t) as

r(t) = (x(t), y(t), z(t)) = x(t)i+ y(t)j+ z(t)k (23)

Then the velocity can be computed as

v(t) =

✓
dx

dt
,
dy

dt
,
dz

dt

◆
=

dx

dt
i+

dy

dt
j+

dz

dt
k (24)
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Figure 4: Motion of a particle in space
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Figure 5: Velocity vector is tangent to the curve

Product rules for time dependent vectors
If a(t) and b(t) are time dependent vectors and f(t) is a time dependent scalar function,
then

d

dt
(a · b) =

✓
d

dt
a

◆
· b+ a ·

✓
d

dt
b

◆
(25)

d

dt
(a⇥ b) =

✓
d

dt
a

◆
⇥ b+ a⇥

✓
d

dt
b

◆
(26)

d

dt
(fa) =

✓
d

dt
f

◆
a+ f

d

dt
a (27)

As a consequence of the first product rule, if v(t) is a vector of constant norm, then
its derivative d

dtv(t) is orthogonal to v(t) at every time, that is,

v(t) · d

dt
v(t) = 0 (28)
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Frenet Moving Frame [this topic will not be evaluated on the exam, only
on the written homework ,]

Î From now on assume that the curve r(t) is such that at any instant the velocity
is non-vanishing, that is,

Î
v(t) 6= 0 (29)

Such curves are known sometimes as regular curves, or more precisely, a regular
parameterization of the curve. We can therefore decompose the velocity as

Î

v(t) = |v(t)| v(t)

|v(t)| = |v(t)|T(t) (30)

where
T (t) ⌘ v(t)

|v(t)| (31)

is the tangent vector to the curve. Notice that it is a unitary vector.

Î Since the norm of T(t) is time independent, d
dtT(t) will always be orthogonal to

T(t). Thus we define the normal vector

N(t) ⌘
d
dtT(t)�� d
dtT(t)

�� (32)

Î Finally, the binormal vector is defined as

B(t) = T(t)⇥N(t) (33)

It is also another unitary vector.

Î The Frenet moving frame to the curve r(t) is the system of vectors
{T(t),N(t),B(t)}. It is the moving analogue of the system {i, j,k}.

Example 3. The equation of a particle moving on a circle of radius R with angular
velocity ! is

r(t) = R cos!ti+R sin!tj (34)
Its velocity is

v(t) = �R! sin!ti+R! cos!tj (35)
and the acceleration is

a(t) = �R!2 cos!t�R!2 sin!tj (36)
To find the tangent vector notice that the norm of the velocity is

|v(t)| = R! (37)
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so
T(t) = � sin!ti+ cos!tj (38)

The derivative of the tangent vector is

d

dt
T(t) = �! cos!ti� ! sin!tj (39)

and it has norm ����
d

dt
T(t)

���� = ! (40)

Therefore the normal vector is

N(t) = � cos!ti� sin!tj (41)

while the binormal vector is

B(t) = (� sin!ti+ cos!tj)⇥ (� cos!ti� sin!tj) = k (42)

Therefore 8
<

:

T(t) = � sin!ti+ cos!tj
N(t) = � cos!ti� sin!tj
B(t) = k

(43)

Notice that N(t) has the same direction as the centripetal acceleration, while B(t) is
parallel to the angular velocity.

−0.8
−0.6

−0.4
−0.2

0
0.2

0.4
0.6

0.8

−0.8
−0.6

−0.4
−0.2
0

0.2
0.4

0.6
0.8

0

0.2

0.4

0.6

0.8

1

Figure 6: Circle: T(t) is red , N(t) is green and B(t) is black

Example 4. Another classical example is the helix
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r(t) = a cos (t) i+ a sin (t) j+ btk (44)
where a > 0. The velocity is

v(t) = �a sin ti+ a cos tj+ bk (45)

and the acceleration is
a(t) = �a cos ti� a sin tj (46)

The magnitude of the velocity is

|v(t)| =
p
a2 + b2 (47)

so the tangent vector is

T(t) = � a sin tp
a2 + b2

i+
a cos tp
a2 + b2

j+
bp

a2 + b2
k (48)

The derivative is also easy to compute

d

dt
T(t) = � a cos tp

a2 + b2
i� a sin tp

a2 + b2
j (49)

as well as its norm ����
d

dt
T(t)

���� =
ap

a2 + b2
(50)

Thus the normal vector is
N(t) = � cos ti� sin tj (51)

while the binormal vector is

B(t) =
⇣
� a sin tp

a2+b2
i+ a cos tp

a2+b2
j+ bp

a2+b2
k
⌘
⇥ (� cos ti� sin tj)

= bp
a2+b2

sin ti� bp
a2+b2

cos tj+ ap
a2+b2

k
(52)

Therefore we just found the Frenet frame for the helix.
8
><

>:

T(t) = � a sin tp
a2+b2

i+ a cos tp
a2+b2

j+ bp
a2+b2

k

N(t) = � cos ti� sin tj
B(t) = bp

a2+b2
sin ti� bp

a2+b2
cos tj+ ap

a2+b2
k

(53)
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Figure 7: Helix: T(t) is red , N(t) is green and B(t) is black
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Arc Length and length of a curve [this topic will not be evaluated on the
exam, only on the written homework ,]

Î Let v denote the speed of the curve

v = |v| (54)

Î We define the arc length as

s(t) =

Z t

t0

v(⌧)d⌧ (55)

or infinitesimally
ds = v(t)dt (56)

The main property or arc length is that if we write the curve r(t) as a function
of s instead, that is, we consider it as r(s), then the particle travels at unit speed
with respect to s. In other words

kdr
ds

k = 1 (57)

Î If the curve has length L from point r(t1) to the point r(t2) then it can be
computed as

L ⌘
Z L

0
ds =

Z t1

t0

ds

dt
dt =

Z t1

t0

vdt (58)

0

r(t)

r(t+�t)
�r

Figure 8: Length of a curve

Example 5. Compute the length of a circle using the previous example as well
as a parameterization of the equation in terms of the arc length.

We had already found that

v(t) = �R! sin!ti+R! cos!tj (59)

The speed v is simply the norm of v, namely

v = R! (60)
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Figure 9: Curvature

Since ! = 2⇡
T where T is the period, the time it takes to travel the circle is the interval⇥

0, 2⇡!
⇤

so the total length is

L =

Z 2⇡
!

0
R!dt = 2⇡R (61)

The arc length s can be computed as

s =

Z t

0
v(⌧)d⌧ =

Z t

0
R!d⌧ = R!t (62)

This allows us to write t as a function of s

t =
s

R!
(63)

Using the old parameterization for the circle

r(t) = R cos!ti+R sin!tj (64)

and replacing t as a function of s we find the desired new parameterization

r(s) = R cos
⇣ s

R

⌘
i+R sin

⇣ s

R

⌘
j (65)

In order to define the concept of curvature suppose that the curve r(s) is being param-
eterized by arc length and lies on the xy plane. If '(s) is the angle between the tangent
vector and the x axis, the change in direction of the curve is given by d

ds'(s) so this
suggests we should define the signed curvature r(s) as

r(s) ⌘ '0(s) (66)
On the other hand, by the definition of the dot product and the fact that the tangent
vector is unitary we also have

cos'(s) = T(s) · i (67)
so differentiating with respect to s

� sin'(s)r(s) = T0(s) · i =
��T0(s)

��N(s) · i (68)

Given that the normal vector is always orthogonal to the tangent vector, the angle
between N and the x axis is '(s) � ⇡

2 or ⇡
2 � '(s) depending on the direction of the
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normal vector. Since cosine is an even function and the normal vector is unitary, we have

N(s) · i = cos
⇣
'(s)± ⇡

2

⌘
= ⌥ sin ('(s)) (69)

thus substituting this into 68 we find that

r(s) = ±
��T0(s)

�� (70)

We only care for our purposes about the absolute value of the curvature, so we define
[this topic will not be evaluated on the exam, only on the written homework
,]
The curvature of a curve r(s) parameterized by arc length is

(s) ⌘
��T0(s)

�� (71)

It relates T0(s) and N(s) as
T0(s) = (s)N(s) (72)

Example 6. Compute the curvature of a straight line
We can parameterize the line as

r(s) = r(0) + sv (73)

where v is a unitary vector giving the direction of the line. Hence

T(s) = r0(s) = v (74)

so
T0(s) = 0 (75)

which means that
(s) = 0 (76)

Thus straight lines are not curved, as expected!
In fact, if the curvature is always vanishing, then from the equation 71 we can deduce

that T(s) = T(0) is independent of s. Since

dr

ds
= T(s) = T(0) (77)

integrating with respect to s we find that

r(s) = T(0)s+ r(0) (78)

In other words

A curve r(s) has a curvature function (s) which vanishes identically if and only

Example 7. Find the curvature of a circle.
We can use the parameterization found before in terms of arc length
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T0(s) = � 1

R
cos

⇣ s

R

⌘
i� 1

R
sin

⇣ s

R

⌘
j (79)

and the curvature is
 (s) =

��T0(s)
�� = 1

R
(80)

Notice that the curvature is independent of the point on the circle and as the circle
increases in size, moving along the circle “feels” less curved. From this point of view, a
straight line can be regarded as a circle of infinite radius.

Finally, we discuss an interesting way to decompose the acceleration. We start with
the formula

a(t) =
d

dt
v(t) =

d

dt
(|v(t)|T(t)) =

d

dt
(vT(t)) (81)

And use the product rule to differentiate this

a(t) =
dv

dt
T(t) + v

d

dt
T(t) =

dv

dt
T(t) + v

����
d

dt
T(t)

����N(t) (82)

Now this is the same as
a(t) =

dv

dt
T(t) + v2(t)N(t) (83)

Therefore the acceleration always belong to the plane determined by T y N, which is
called the osculating plane.

As a final computation, if we want to know the curvature with respect to an arbitrary
parameter, notice that

|v(t)⇥ a (t)| = |vT(t)⇥ (aT(t) + aN(t))| = |vT(t)⇥ aN (t)|
= v3(t)

(84)

Thus
(t) =

1

v3
|v(t)⇥ a(t)| (85)
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[this topic will not be evaluated on the exam, only on the written homework
,]

Î The tangential acceleration is

aT(t) ⌘
dv

dt
T(t) (86)

Î The normal acceleration is

aN(t) =v2(t)N(t) (87)

Î To compute the curvature with respect to an arbitrary parameter we can use the
formulas

(t) = 1
v

�� d
dtT(t)

��
(t) = 1

v3 |v(t)⇥ a(t)| (88)
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