Lecture 22 (16.1-16.2)
Integrals along curves (Line integrals)
How to integrate a function along a curve?

what is total mass if you know the density function of the wire?
units $\frac{\text { mass }}{\text { length }} \longleftarrow f=$ mass alensity of the wire $=$ mass per unit length place of wire size as, mass of this piece is=density-length $=f d s$

$$
\begin{aligned}
& \text { Total mass }=\int f d s=\int_{t f}^{f} \frac{d s}{d t} d t \\
& \begin{aligned}
\frac{d s}{d f}=\text { rate of change of } \frac{\text { distance }}{\text { time }} & =\int_{t_{i}}^{f} \underbrace{\left|\nabla^{D}\right|}_{\text {speed }} d t \\
& =\text { speed of come } \\
\text { speed } & =\left|\nabla^{\nu}\right|=\left|\frac{d \vec{r}}{d t}\right|
\end{aligned}
\end{aligned}
$$

key Formula \#1
If you want to integrate a function f along a core
(1) Find equation/parametrization of the curve

$$
\vec{r}(t)=(x(t), y(t), z(t))
$$

(2) Find velocity $\vec{v}=\frac{d \vec{r}}{d t}$
(3) Find speed $|\vec{v}|$.
(4) Do the integral

$$
\int_{t_{i}}^{t_{f}} f|\vec{v}| d t
$$

$t_{i}=$ initial time,$\quad t_{s}=$ final tine,
Remeerk: that integral is sometimes curitten as

$$
\int_{C} f d s
$$

C stands for curve.
Example:
Find

$$
\int_{c} f d s
$$

$$
f=x y+1
$$

C is the part of the helix $\Gamma^{0}(t)=(\cos t, \sin t, t)$
from the point $(1,0,0)$
to the point $(0,1, \pi / 2)$

$$
\begin{aligned}
& \text { steps } \\
& H 1 \vec{r}(t)=(\cos t, \sin t, t) \\
& \# 2 \vec{v}^{0}(t)=\frac{d r \vec{r}}{d t}=(-\sin t, \cos t, 1) \\
& \# 3|\vec{v}|=\sqrt{(-\sin t)^{2}+\cos ^{2} t+1^{2}}=\sqrt{2} \\
& \# 4 \\
& =\int f(\vec{v} \mid d t \\
& =\int(x y+1) \sqrt{2} d t
\end{aligned}
$$

$$
\begin{aligned}
& t=\pi / 2 \sin \int^{2}(\pi / 2)=(0,1, \pi / 2) \\
& =\int_{t=0}^{\pi / 2} \sin c e \vec{r}(0)=(1,0,0) \\
& =\int_{0}^{\pi / 2}(1+\cos t \sin t+1) \sqrt{2} d t \\
& =\frac{\sqrt{2}}{2}(\pi+1)
\end{aligned}
$$

Example 2
Find $\int_{C} f d s$
$f=x$, C which is the part of the parabolae $y=x^{2}$ between $x=0$ and $x=1$

$\# 1$ find $\vec{r}(t)$

$$
\begin{array}{ll}
& \vec{r}(t)=\left(t, t^{2}\right) \\
\# 2 & \vec{v}(t)=(1,2 t) \\
\# 3 & |\vec{v}|=\sqrt{1+4 t^{2}} \\
\# 4 & \int f|\vec{v}| d t \\
= & \int x \sqrt{1+4 t^{2}} d t
\end{array}
$$

$$
\begin{aligned}
& =\int_{t=0}^{t=1} t \sqrt{1+4 t^{2}} d t \\
& =\frac{1}{12}(5 \sqrt{5}-1)
\end{aligned}
$$

The end of 16.1

Section 16.2

$$
\text { work } W=10 \mathrm{~N} \cdot 5 \mathrm{n}=50 \mathrm{~J}
$$

$$
\left|F^{\top}\right|=1 O N
$$

$$
|\Delta \vec{r}|=5 m
$$

$5 m$

$$
\begin{aligned}
\text { Work } & \left.=\left\lvert\, 0 N \cdot 5 m \cdot \frac{\frac{1}{2}}{\cos (600}\right.\right)=25 \mathrm{~J} \\
& =|\vec{F}||\Delta \vec{r}| \cos \theta
\end{aligned}
$$

$$
\text { work }=\vec{F} \text {. } \Delta \vec{r} \tau_{d o t}^{d}
$$

work for this simple

total work $=\iint \vec{F} \circ \vec{V} d t$
Key Formula $\$ 2$
Tofincl the integral of a vector \vec{F} culong a curve C :
\# 1 parametrize curve

$$
\vec{r}(t)=(x(t), y(t), z(t))
$$

$\# 2$ find velocity

$$
\vec{v}^{3}=\frac{d \vec{r}}{d t}
$$

\#3(different) do the integrue

$$
\int_{t_{i}}^{t_{g}} \vec{F} \cdot \vec{v} d t
$$

Remark: this integral is called work or circulation, and it is written as

$$
\int_{c} \vec{F} \cdot d \vec{r}
$$

Example 1
Find the work done by

$$
\vec{F}=x y+3 \vec{\jmath}=(x y, 3)
$$

along the curve $y=x$ from $(0,0)$ to $(1,1)$

$\# 1 \quad \vec{r}(t)=(t, t)$
$\# 2 \quad \vec{v}(t)=(1,1)$
\#3 $\int \vec{F} \cdot \vec{v} d t$

$$
\begin{aligned}
& =\int(x y, 3) \cdot(1,1) d t \\
& =\int_{t=1}(x y+3) d t \\
& =\int_{t=0}^{1}\left(t^{2}+3\right) d t=\frac{10}{3}
\end{aligned}
$$

example 2

$$
\vec{F}=(x y, 3)
$$

finch work along this now path

$$
\begin{aligned}
& \vec{r}(t)=(0, t) \\
& \vec{v}(t)=(0,1) \\
& \int \vec{F} \cdot \vec{v} d t \\
& =\int(x y, 3)_{\int_{t=1}^{0}=1}^{0}(0,1) d t \\
& =\int_{t=0}^{t=1} 3 d t \\
& =3 \\
& \overrightarrow{r^{y}}(t)=(t, 1) \\
& \vec{r}(t)=(1,0) \\
& \int \vec{F} \cdot \vec{v} d t \\
& =\int(x y, 3) \cdot(1,0) d t \\
& =\iint_{t=1} x y d t \\
& \text { total work }=3+1 / 2=5 / 2
\end{aligned}
$$

which is not tho same as the ore from before
Morel:
work clepends on the trajectory not just the end posits.
Thurs day ${ }^{i}$
conservative forces
\equiv : work only depends on endpoints not trajectory.

Lecture 23 ($16.2-16.3$)
conservative vector fields and potential functions

work done by $\vec{F}=\int_{C} \vec{F}^{د} \cdot d \vec{r}=\int \vec{F} \cdot \vec{V} d t$ \bar{F}^{J} is conservative if the work done by \vec{F} depends only on the end points and not the curve (trajectory) which connects two
(1) point.

How can you verify whether \vec{F}^{0} is conservative ornot?
\Rightarrow will be conservative if $\bar{\nabla} \bar{F}^{\circ}$ (called the curl of \vec{F}) vanisher.
what is tho url of \bar{F}^{3} ? (扈III black box)

$$
\begin{gathered}
\nabla \times \vec{F}^{3}=\operatorname{corl} \text { of } \vec{F}=\text { a near vector } \\
\vec{F}=F_{1} \rightarrow^{3}+F_{2} \vec{j}+F_{3} \vec{k}=\left(F_{1}, F_{2}, F_{3}\right) \\
\nabla \times \vec{F}^{0}=\operatorname{det}\left(\begin{array}{lll}
\overrightarrow{1} & \vec{b} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{1} & F_{2} & F_{3}
\end{array}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \bar{F}^{0}=\left(x y^{2} z, x^{2} y z, z^{2}\right) \\
& \nabla \times \vec{F}^{0}=\operatorname{det}\left(\begin{array}{ccc}
\vec{i} & \vec{J} & \vec{k} \\
\partial x & \frac{\partial}{\partial y} & \partial z \\
x y^{2} z & x^{2} y z & z^{2}
\end{array}\right) \\
& =\overrightarrow{1}(\underbrace{\frac{\partial}{\partial y} z^{2}}_{0}-\underbrace{\frac{\partial}{\partial z} x^{2} y z}_{x^{2} y})-\vec{j}(\underbrace{\frac{\partial}{\partial x} z^{2}}_{0}-\underbrace{\frac{\partial}{\partial z} x y^{2} z}_{x y^{2}}) \\
& +\vec{k}(\underbrace{\frac{\partial}{\partial x} x^{2} y z}_{2 x y z}-\underbrace{\partial y}_{2 x y z} x y^{2} z) \\
& =-x^{2} y \vec{\imath}+x y^{2} \vec{\jmath}+O \overrightarrow{k^{0}} \\
& \nabla \times \vec{F}=\left(-x^{2} y, x y^{2}, 0\right)
\end{aligned}
$$

since not every entry of $\nabla \times F=$
F is not conservative,
example! $\vec{F}^{0}=(-y, x, O)$

$$
\nabla \times \vec{F}=\operatorname{det}\left(\begin{array}{ccc}
\vec{\imath} & \vec{J} & \vec{k} \\
\frac{2}{\partial x} & \frac{\partial}{d y} & \frac{2}{\partial z} \\
-y & x & 0
\end{array}\right)
$$

$$
\begin{aligned}
& =T\left(\frac{\partial}{\partial y} \partial-\frac{\partial}{\partial z} x\right)-\vec{j}\left(\frac{\partial}{\partial x} 0+\frac{\partial}{\partial z} y\right)+\vec{k}\left(\frac{\partial}{\partial x} x+\frac{\partial}{\partial y} y\right) \\
& =0 i^{3}+0 \jmath+2 \vec{j} \\
& =(0,0,2) \\
& \vec{F}=(x, y, 0) \\
& \nabla \times \vec{F}=\operatorname{det}\left(\begin{array}{ccc}
\vec{j} & \vec{J} & \vec{k} \\
\partial x & \partial y & \frac{\partial}{\partial z} \\
x & y & 0
\end{array}\right) \\
& =T^{3}\left(\frac{\partial}{\partial y} 0-\frac{\partial}{\partial z} y\right)-\vec{J}\left(\frac{\partial}{\partial x} 0-\frac{\partial}{\partial t} x\right)+\vec{k}\left(\frac{\partial}{\partial x}-\frac{\partial x}{\partial y}\right) \\
& =0 T^{3}+0 j^{j}+0 \hbar^{j} \\
& =[0,0,0)
\end{aligned}
$$

\vec{F} is conservative.

$$
\begin{aligned}
& \nabla \times\left(-\vec{F}^{0}\right)=-\nabla \times \vec{F}=(0,0,0) \\
& \nabla \times(2 \vec{F})=2 \nabla \times \vec{F}=(0,0,0)
\end{aligned}
$$

Step 2:
If \vec{F} is conservative, then one can find a potential function for F^{ν}. This is a function f which satisfies

$$
\nabla f=\vec{F}
$$

example

$$
\left[\begin{array}{l}
\overrightarrow{P^{2}}=-m g \vec{j}=(0,-m g, 0) \quad, m, g \text { constants } \\
\downarrow \\
b_{x}^{m} \quad f=-m g y, \quad \nabla f=(0,-m g, 0)
\end{array}\right.
$$

How to find the potention function f of $F^{0}=\left(F_{1}, F_{2}, F_{3}\right)$ You must solve

$$
\left\{\begin{array}{l}
\frac{\partial f}{\partial x}=F_{1} \\
\frac{\partial f}{\partial y}=F_{2} \\
\frac{\partial f}{\partial z}=F_{3}
\end{array}\right.
$$

example: Final a potential function

$$
F^{0}=\left(2 x \ln y, \frac{F_{1}}{\frac{x^{2}}{y}+z^{2}}, \quad \frac{F_{2}}{2 y z}\right)
$$

(Remark: check that $\nabla \times \bar{F}^{0}=(0,0,0)$ so that \vec{F} is conservative)
Lat's find a potential function f :

Must solve the system
(1) $\int \frac{\partial f}{\partial x}=2 x \ln y$
(2) $\left\{\begin{array}{l}\frac{\partial f}{\partial y}=\frac{x^{2}}{y}+z^{2} \\ \frac{\partial f}{}=24 z\end{array}\right.$
analogy

$$
\begin{aligned}
& \frac{d f}{d x}=x^{2}+1 \\
& f=\frac{x^{3}}{3}+x+c
\end{aligned}
$$

$$
\bigcup \partial z \quad \cup
$$

"Particle" integral with respect to x :

$$
\begin{aligned}
& f=\int 2 x \ln y d x=x^{2} \ln y+\underbrace{c(y, z)}_{\text {our constant }} \\
& \text { is a } \\
& \text { function } \\
& \text { fall the } \\
& \text { Variables } \\
& \text { we } \\
& \text { didn't use } \\
& \text { for fuintegotion }
\end{aligned}
$$

new " f "

$$
f=x^{2} \ln y+c(y, z)
$$

equations (2)

$$
\begin{gathered}
\frac{\partial f}{\partial y}=\frac{x^{2}}{y}+z^{2} \\
\frac{\partial}{\partial y}\left(x^{2} \ln y+c(y, z)\right)=\frac{x^{2}}{y}+z^{2} \\
\frac{x^{2}}{y}+\frac{\partial}{\partial y} c=\frac{x^{2}}{y}+z^{2}
\end{gathered}
$$

$$
\begin{gathered}
\frac{\partial c}{\partial y}=z^{2} \\
c(y, z)=\int z^{2} d y=y z^{2}+b(z)
\end{gathered}
$$

f version 2.0

$$
f=x^{2} \ln y+y z^{2}+b(z)
$$

equatiós (3)

$$
\begin{gathered}
\frac{\partial f}{\partial z}=2 y z \\
\frac{\partial}{\partial z}\left(x^{2} \ln y+y z^{2}+b(z)\right)=2 y z \\
0+2 y z+\frac{d b}{d z}=2 y z \\
\frac{d b}{d z}=0 \\
b(z)=\int 0 d z=0+a
\end{gathered}
$$

Romark

$$
f^{n}=-V
$$

V is the notation physicit Usc
(3) Knowing potential f, makes finding the work entirely trivial!

work of \vec{F} along this path (when \vec{F} is conservative)

$$
\left.\int_{c} \vec{F}^{-S} \cdot d \vec{r}\right)=f(Q)-f(P)
$$

work equals difference in ptention every
example:

$$
\bar{F}^{3}=\left(2 x \ln y, \frac{x^{2}}{y}+t^{2}, 2 y z\right)
$$

$(0,1,0)$
work done by

$$
\begin{aligned}
& f=x^{2} \ln y+y z^{2}+a \\
& \text { work }=f(1,1,1)-f(0,1,0) \\
& =(1 \ln \mid+1+a)-(0+0+a) \\
& =1+a \\
& =11]
\end{aligned}
$$

$$
\underbrace{-}
$$

Lecture 24 (16.4: Green's Theorem) and a bot from 16.2

Last time
$\rightarrow \vec{F}$ force (or vector)
g if $\nabla \times \vec{F}^{0}=\vec{D}^{D}=(0,0,0)$, \bar{F}^{J} was conservative

$$
\int_{c} \overrightarrow{F^{s}} \cdot d \vec{r}=f(Q)-f(\varphi)
$$

for conservative forces
 lose d path
(hound tip) a onsenctive force is zero!

Green's Theorem (for regions on the ry plane)
If C is alclosecl curve on the $x y$ plane
and R is the region it encloses then the work done by a force (or vector field F^{0}) along the curve C equals

Remarks:
(1) Here $\vec{k}=(0,0,1)$
(2) The curve is traveled (oriented) in a counterclockwise way for this theorem to hold
(3) How it appears in the book:
if $\vec{F}^{0}=M \rightarrow+N J=(M, N, O)$, so
$\nabla \times \vec{F}=\left(0,0, \frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right)$ and so the
theorem can be written as

$$
\int_{C}^{F^{0}} \cdot d \vec{r}=\int_{\mathcal{R}}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A
$$

how we will use it \hat{R}

Example:

$$
\begin{aligned}
& F^{0}=\left(x^{2}+e^{y}, x+y_{i}, 0\right) \\
& \text { curve }(0,3) \\
& C=\text { sidle of tho triangle } \\
& R=\text { inside of tho triangle }
\end{aligned}
$$ work done by F^{0}

directly: One integral tor each sidle of the triangle and then add them up.
Green

$$
\begin{aligned}
\text { Green } & =\int_{R} \int_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A \\
& =\int_{0}^{1} \int_{0}^{3-3 x}\left(1-e^{y}\right) d y d x \\
& =\frac{1}{6}\left(17-2 e^{3}\right)
\end{aligned}
$$

Flux and second version of Green's Theremin

Flux: how much "stuff" exits a region on the ry plane through its borcler, 4

curve C with equation

$$
\vec{r}(t)=(x(t), y(t))
$$

$\vec{N}=$ normal vector to the curve

$$
F \text { lux of } \vec{F}^{D}=\int_{C} F^{D} \cdot N^{D} d t
$$

so here we use the ${ }^{C}$ dot product
with the normal rector insbacl of the velocity vector
extemple

$$
\rightarrow x \rightarrow \begin{aligned}
& x^{2}+y^{2}=4 \\
& F=0
\end{aligned}
$$

finch Flux of \vec{F} :
(1) Find equation (parcomefritation of the curie)

$$
\begin{array}{r}
\vec{r}^{0}(t)=(r \cos \theta, r \sin \theta)=(2 \cos \theta, 2 \sin \theta) \\
\vec{r}^{s}(t)=(\underbrace{2 \cos t}_{(t)}, \underbrace{2 \sin t)}_{y(t)} \\
\vec{N}=\left(\frac{d y}{d t},-\frac{d x}{d t}\right)=(2 \cos t, 2 \sin t)
\end{array}
$$

Flux

$$
\begin{aligned}
& =\int \vec{F} \cdot \vec{N} d t \\
& =\int(x, y) \cdot(2 \cos t, 2 \sin t) d t \\
& =\int_{0}^{2 \pi} 2 \cos t+2 g \sin t d t \\
& =\int_{0}^{2 \pi} 2(2 \cos t) \cos t+2(2 \sin t) \sin t d t \\
& =\int_{0}^{2 \pi} 4 \cos ^{2} t+4 \sin ^{2} t d t \\
& =\int_{0}^{2 \pi} 4 d t \\
& =8 \pi
\end{aligned}
$$

asicle

$$
\begin{aligned}
& \vec{r}^{\prime}(t)=(x, y)=\left(x, x^{2}\right) \\
& \overrightarrow{r^{\prime}}(t)=(t, \underbrace{t^{2}}_{x(2)}) \\
& \vec{v}=\left(\frac{d y}{d t},-\frac{d x}{d t}\right)=(2 t,-1) \\
& \begin{array}{l}
y=x^{2} \\
\frac{r \sin \theta}{\sin \theta}=r^{2} \cos ^{2} \theta \\
\cos ^{2} \theta
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{r}=(x, y)=(r \cos \theta, r \sin \theta) \\
& \vec{r}=\left(\frac{\sin \theta}{\cos ^{2} \theta} \cos \theta, \frac{\sin \theta}{\cos ^{2} \theta} \sin \theta\right. \\
& \vec{r}=\left(\tan \theta, \tan ^{2} \theta\right) \\
& \overrightarrow{r^{\prime}}(t)=\left(\tan t, \tan ^{2} t\right)
\end{aligned}
$$

alternative valid

Green's Theorem for Flux (regions on the $x y$ plane)

$$
\begin{aligned}
& \vec{F}=(M, N, O)^{R \text { enclose } d \text { region }} \\
& \text { Flux }=\int_{C} \vec{F} \cdot \vec{N} d t \\
& \text { Green } \iint_{R}\left(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial U}\right) d A
\end{aligned}
$$

Back to the circle example:

$$
\vec{F}=\left(\frac{x}{M}, y_{\pi}\right)
$$

Flux of \vec{F}

$$
\begin{aligned}
& =\text { Green } \iint_{R}\left(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}\right) d A \\
& =\iint_{R}(1+1) d A \\
& =\int_{0}^{2 \pi} \int_{0}^{R} 2 r d r d \theta \\
& =\left.\int_{0}^{2 \pi} r^{2}\right|_{0} ^{2} d \theta \\
& =\int_{0}^{2 \pi} 4 d \theta \\
& =8 \pi
\end{aligned}
$$

16.5 (Preview)

Peercemetrize SURFACES
${ }_{F}(t)$: carre wes one parametar t
$\Rightarrow(u, v)$: surface: uses two

$$
(x, y, z)=\underbrace{(x, y, 5+y-2 x)}_{\vec{F}(x, y)}
$$

parcunetritation plene intemes of x / y

$$
(x, y, z)=\underbrace{(x, 2 x+z-5, z)}_{\vec{r}^{\prime}(x, z)}
$$

alternative parametrization of the SAME plane

$$
\begin{aligned}
& (x, y, z)=(\underbrace{\left.\left(x, y, \sqrt{x^{2}+y^{2}}\right)\right)}_{\vec{r}(x, y)} \\
& (x, y, z)=\begin{array}{c}
(r \cos \theta, r \sin \theta, z) \\
=(r \cos \theta, r \sin \theta, r)
\end{array}
\end{aligned}
$$

Lecture $25(16.5, \underbrace{(6.6)}_{\text {not on midterm }}$

Parametrizing surfaces
fy you write the position of a point on the surface in terms of two variables (parameters)
to find a parametrization, you use the equation of the surface to find a relation between x, y, z and so you can write one of then in terms of the others
example: cone $z=\sqrt{x^{2}+y^{2}}=r$

$$
\begin{aligned}
& \left.\vec{r}=(x, y, z) \quad r=z=3<\frac{x^{2}+y^{2}=r}{\vec{r}(x, y)=\left(x, y, \sqrt{x^{2}+y^{2}}\right)} \begin{array}{rl}
\vec{r}(r, \theta) & =(r \cos \theta, r \sin \theta, r) \\
0 \leqslant \theta \leqslant 2 \pi \quad 0 \leqslant r \leqslant 3 \\
\vec{r}
\end{array}\right) \times \sqrt{x^{2}+y^{2}}
\end{aligned}
$$

Last formula for the exam [surface Jacobian]

$\Delta S=$ tiny area of the surface

$$
=\left|\frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{r}}{\partial v}\right|_{D} d v d u
$$

surface Jaabian

$$
=\left|\frac{\partial \vec{r}}{\partial u} \times \frac{\partial r}{\partial v}\right|
$$

Last formula for exam

$$
\text { arece surface } S=\int_{u} \int_{v}\left|\frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{r}}{\partial v}\right| d v d u
$$ bounds bounds

here $\vec{r}(u, v)$ is the parametrization of the surface

$$
\begin{aligned}
& \vec{r}(\theta, r)=(r \cos \theta, r \sin \theta, r) \\
& \frac{\partial \vec{r}}{\partial \theta}=(-r \sin \theta, r \cos \theta, 0) \\
& \frac{\partial \vec{r}}{\partial r}=(\cos \theta, \sin \theta, 1)
\end{aligned}
$$

$$
\begin{aligned}
& \underbrace{\frac{\partial \vec{r}}{\partial \theta} \times \frac{\partial \vec{r}}{\partial r_{j}}=}_{\text {rector perpendicular }} \operatorname{det}\left(\begin{array}{ccc}
T & \vec{J} & \vec{k} \\
-r \sin \theta & r \cos \theta & 0 \\
\cos \theta & \sin \theta & 1
\end{array}\right) \\
& \text { to the cone }=(r \cos \theta, r \sin \theta,-r)
\end{aligned}
$$

$$
\begin{aligned}
& \text { "Surface" } \\
& \text { Jacobian }=\left|\frac{\partial r^{-}}{\partial \theta}<\frac{\partial r}{\partial r}\right| \\
&=\sqrt{r^{2} \cos \theta+r^{2} \sin ^{2} \theta+r^{2}} \\
&=\sqrt{2 r^{2}} \\
&=\sqrt{2} r \\
& \begin{aligned}
\text { area } \\
\text { cone }
\end{aligned}=\int_{0}^{2 \pi} \int_{0}^{3} \sqrt{2} r d r d \theta \\
&=\mid 9 \sqrt{2} \pi
\end{aligned}
$$

$$
\begin{aligned}
& \vec{r}(r, \theta)=(r \cos \theta, r \sin \theta, 0) \\
& \frac{\partial r \vec{r}}{\partial \theta}=(-r \sin \theta, r \cos \theta, \partial) \\
& \frac{\partial r}{\partial r}=(\cos \theta, \sin \theta, \partial 1 \\
& \frac{\partial \vec{r}}{\partial \theta} \times \frac{\partial \vec{r}}{\partial \theta}=(0,0,-r) \\
& \left|\frac{\partial \vec{r}}{\partial \theta} \times \frac{\partial \vec{r}}{\partial \theta}\right|=\sqrt{0^{2}+0^{2}+r^{2}}=r
\end{aligned}
$$

Finch the area of the piece of the surface

$$
z=4-x^{2}-y^{2}
$$

- above the ry plane
- between the curves $y=x$ and $y=x^{2}$

$$
\frac{\partial \vec{r}}{\partial x}=(1,0,-2 x)
$$

$$
\frac{\partial \vec{r}}{\partial y}=(0,1,-2 y)
$$

$$
\frac{\partial \vec{r}}{\partial x} \times \frac{\partial \vec{r}}{\partial y}=\operatorname{det}\left(\begin{array}{ccc}
1 & \vec{j} & \vec{k} \\
1 & 0 & -2 x \\
0 & 1 & -2 y
\end{array}\right)=(2 x, 2 y, 7)
$$

$$
\left|\frac{\partial r^{3}}{\partial x} \times \frac{\partial r^{2}}{\partial y}\right|_{1}=\sqrt{1+4 x^{2}+4 y^{2}}
$$

$\operatorname{arece}=\int_{0}^{1} \int_{x^{2}}^{x} \sqrt{1+4 x^{2}+4 y^{2}} d y d x$

Steps
(1) Final parametrization $\vec{r}(u, v)$
(2) Find $\frac{\partial \vec{r}}{\partial u}, \frac{\partial r}{\partial r}$ of surface
(3) Find $\frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{r}}{\partial v}$
(4) Finch $\left|\frac{\partial r \vec{r}}{\partial u} \times \frac{\partial r}{\partial v}\right|$
(5)

$$
\text { area }=\iint_{v}\left|\frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{r}}{\partial v}\right| d u d u
$$ bounds bounds

Section 16.6 (for final exam) want to integrate a function f over the surface. prewrite function in

$$
\left.\iint f d\right\}
$$

$$
=\int_{\substack{\text { bounds } \\ u}}^{\int_{v}} f(\left.\frac{\partial m e d s}{\left\lvert\, \frac{\partial r}{r}\right.} \times \underbrace{\partial u}_{\text {score as }} \times \frac{\partial r}{\partial v} \right\rvert\, d v d u
$$

surface
Example

$$
f^{\prime}=\frac{\text { mass }}{\text { unit area }} \rightarrow \iint f d S=\text { total mass of }
$$

example:
integrate $f(x, y, z)=x+y^{2}$
over the cylinder $x^{2}+y^{2}=4 \quad z=3$
between $z=0$ and $z=3$
(1) Step 1 : parcenetrize cylinder

$$
\begin{align*}
& \overrightarrow{r^{D}}=(x, y, z) \\
& \vec{r}=(r \cos \theta, r \sin \theta, z) \\
& \vec{r}(\theta, z)=(2 \cos \theta, 2 \sin \theta, z)
\end{align*}
$$

$$
x^{2}+y^{2}=4
$$

$$
r^{2}=4
$$

(2)

$$
\begin{gathered}
\frac{\partial \vec{r}}{\partial \theta}=(-2 \sin \theta, 2 \cos \theta, 0) \\
\frac{\partial \vec{r}}{\partial z}=(0,0,1)
\end{gathered}
$$

(3) $\frac{\partial r \vec{r}}{\partial \theta} \times \frac{\partial \vec{r}}{\partial z}=(2 \cos \theta, 2 \sin \theta, 0)$
(4) $\left|\frac{\partial \vec{r}}{\partial \theta} \times \frac{\partial \vec{r}}{\partial z}\right|=\sqrt{4 \cos ^{2} \theta+4 \sin ^{2} \theta}=2$
(5) (new vtep)

$$
\begin{gathered}
f=x+y^{2} \\
f=2 \cos \theta+(2 \sin \theta)^{2} \\
f=2 \cos \theta+4 \sin ^{2} \theta \\
\iint f d s_{1} \\
=\iint\left(2 \cos \theta+4 \sin ^{2} \theta\right)\left|\frac{2 r}{2 \theta} \times \frac{2 r}{2 z}\right| d z d \theta \\
=\int_{0}^{2 \pi} \int_{0}^{3}(2 \cos \theta+4 \sin \theta) 2 d z d \theta \\
=24 \pi
\end{gathered}
$$

Lecture $26(16.6,16.8)$

$F_{u x}=\iint \vec{F} \cdot \vec{N} d v d u$
u, v parcuncters of parametritation of the suiface

related to how much goes "stuff" passes through asorface
example $F^{D}=(x-y, x+z, z-y)$
two choices
for \vec{N} and you are told which one to use

FWX of \vec{F} through 5 the one with normal
First step: paramentite the vurfuce entry J

$$
\begin{aligned}
\vec{r}(\theta, r) & =(r \cos \theta, r \sin \theta, 1) \\
\frac{\partial \vec{r}}{\partial \theta} & =(-r \sin \theta, r \cos \theta, 0) \\
\frac{\partial \vec{r}}{\partial r} & =(\cos \theta, \sin \theta, 0) \\
\frac{\partial \vec{r}}{\partial \theta} \times \frac{\partial \vec{r}}{\partial r} & =\operatorname{det}\left(\begin{array}{rcc}
-r \sin \theta & r \cos \theta & 0 \\
\cos \theta & \sin \theta & 0
\end{array}\right) \\
& =\left(0,0,-r \sin ^{2} \theta-r \cos ^{2} \theta\right) \\
& =(0,0,-r) \underbrace{,}_{\text {negative thirdentre }}
\end{aligned}
$$

we should have don

is closed we will choose the normal vector that points allay from the surface

$$
\begin{aligned}
& \vec{r}=(r \cos \theta, r \sin \theta, 1) \\
& \frac{\partial \vec{r}}{\partial r} \times \frac{\partial \vec{r}}{\partial \theta}=(0,0, r) \\
& \vec{F}=(x-y, x+z, z-y)
\end{aligned}
$$

$$
\begin{aligned}
& \vec{F}=(r \cos \theta-r \sin \theta, r \cos \theta+1,(1-r \sin \theta) \\
& F w x=\int_{0}^{2 \pi} \int_{0}^{1} \vec{F}^{s} \cdot \frac{\left(\frac{\partial \vec{r}}{\partial r} \times \frac{d r}{\partial \theta_{0}}\right)}{(2,0, r)} d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1}(1-r \sin \theta) r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1}\left(r-r^{2} \sin \theta\right) d r d A \\
& =\pi
\end{aligned}
$$

Section 16.8
Divergence (or Gauss) Theorem

$\vec{F}=\left(F_{1}, F_{2}, F_{3}\right)(1,3-$ region R or container)
poke ball
Divergence Theorem Flux of \bar{F}^{3}

$$
=\iint \vec{F}^{s} \cdot\left(\frac{\partial r^{\vec{r}}}{\partial u} \times \frac{\partial r_{v}}{\partial v}\right)
$$

Theorem

$$
\iint_{R} \int \underbrace{\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}}_{\text {called divergence }}) d V
$$ of F

$$
\begin{aligned}
\text { divergence of } \vec{F} & =\nabla \cdot \vec{F} \\
& =\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \cdot\left(F_{1}, F_{2}, F_{3}\right) \\
& =\frac{\partial F_{1}}{}+\partial F_{2}+\partial F_{3}
\end{aligned}
$$

Example:

$$
\bar{F}=(x-y, x+z, z-y)
$$

surfae =
disk at haight-1

$$
x^{2}+y^{2} \leq 1, z=1
$$

+ part of cone

$$
\text { whe } z=\sqrt{x^{2}+y^{2}}
$$

helow $z=1$ plare
divergence theonem $=$ Flux (disk + cone)

$$
\stackrel{\text { Theoren }}{=} \iint_{R} \nabla \cdot \vec{F}^{0} d V
$$

$$
\begin{aligned}
& =\iiint\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial z}{\partial z}\right) \cdot(x-y, x+z, z-w) \\
& =\iiint \frac{\partial}{\partial x}(x-y)+\frac{\partial}{\partial y}(x+z)+\frac{\partial}{2 x}(z-y) \\
& =\iiint_{2 \pi}(1+0+1) \overline{d V} \\
& =\int_{0}^{2 \pi} \int_{0}^{1} \int_{r}^{1} 2 \text { remindicicerdunds } \\
& \xrightarrow{\stackrel{ }{z}^{2}} r=\frac{2 \pi}{3}
\end{aligned}
$$

flux (clisk + cone)
Romark

$$
\frac{2 \pi}{3}=\underbrace{\text { flux of disk, flux of cone }}_{\substack{\text { found it on last } \\ \text { example and it was }}}
$$

$$
\frac{2 \pi}{3}=\pi+\text { flux of the }
$$

$$
\begin{aligned}
& \text { flux through }=\frac{2 \pi}{3}-\pi=-\frac{\pi}{3} \\
& \text { cone }
\end{aligned}
$$

if we want to check
this you can find flux through cone directly.
parametrization of cone

$$
\begin{aligned}
\vec{r} & =\left(x, y, \sqrt{x^{2}+y^{2}}\right) \\
\vec{r}(\theta, r) & =(r \cos \theta, r \sin \theta, r)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial r}{\partial \theta}=(-r \sin \theta, r \cos \theta, \theta) \\
& \frac{\partial \vec{r}}{\partial r}=(\cos \theta, \sin \theta, 1) \\
& \frac{\partial \vec{r}}{\partial \theta} \times \frac{\partial r}{\partial r}=(r \cos \theta, r \sin \theta,-r)
\end{aligned}
$$

Flux through sone

$$
\begin{aligned}
& =\int_{0}^{2 \pi} \int_{0}^{1}(x-y, x+z, z-y) \cdot(r \cos \theta, r \sin \theta,-r) \\
& =\int_{0}^{2 \pi} \int_{0}^{1}(r \cos \theta-r \sin \theta, r \cos \theta+r, r-r \sin \theta) \\
& \quad \cdot r \cos \theta, r \sin \theta,-r) d r d \theta
\end{aligned}
$$

check io

$$
=\quad-\frac{\pi}{3}
$$

Lecture 27 (16.7)
Stakes Theorem
$C=$ closed curve in space

$$
\overrightarrow{F^{\prime}}=\text { some vector fielded }
$$

example: $(0,0,1)$

curve $C=3$ segments connecting the points $(0,0,1),(1,0,0,,(0,1,0)$

$$
\vec{F}=\left(z^{2}, y^{2}, x\right)
$$

Find work of \vec{F} along C using stokes' thooven Before stokes: 3 separate line integral e and add the answers

After stokes
surface: triangle shown in the picture to parametrize the tricingle, you parametrize the plane to which it belongs.

$$
\left.\begin{array}{rl}
\vec{n}=\overrightarrow{P Q} \times \overrightarrow{P R} & =\operatorname{det}\left(\begin{array}{ccc}
\overrightarrow{1} & \vec{j} & \vec{k}^{2} \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right) \\
& =(1, \mid, 1
\end{array}\right)
$$

$\vec{r}(x, y)=(x, y, 1-x-y)$ parcunetritation plave

$$
\begin{aligned}
& \frac{\partial \vec{r}}{\partial x}=(1,0,-1) \\
& \frac{\partial \vec{r}}{\partial y}=(0,1,-1)
\end{aligned} \quad \frac{\partial \vec{r}}{\partial x} \times \frac{\partial \vec{r}}{\partial y}=((1,1,1)
$$

Stokes: $\left\lvert\, \int_{c} \vec{F} \cdot d \vec{r}=\iint_{S}\left[(\overline{\nabla \times \vec{F}}]-\left[\left(\frac{\partial r^{y}}{\partial u} \times \frac{\partial \vec{F}}{\partial v}\right)\right] d v d u\right.\right.$

$$
\begin{aligned}
\vec{F} & =\left(z^{2}, y^{2}, x\right) \\
\nabla \times \vec{F} & \left.=\operatorname{det}\left(\begin{array}{lll}
\overrightarrow{\partial^{\prime}} & \vec{j} & \vec{k} \\
z^{2} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}
\end{array}\right):(0,2 z-1,0)\right)
\end{aligned}
$$

Stokes

$$
\begin{aligned}
& =\int_{0}^{1} \int_{0}^{1-x} \operatorname{lo}_{0}^{1-2 z-1,0)} \cdot(1,1,1) d y d x \\
& \begin{array}{l}
\left.(0,1) y_{y=1-x}^{y} 0=\int_{0}^{1} \int_{0}^{1-x}(0,2(1-x-y)-1,0) \cdot(1,1) 1\right) d y d 1 \\
(1,0)
\end{array} \\
& \begin{array}{l}
=-\frac{1}{6} \\
\vec{n}+4^{n} x^{n^{-1}} 介 \vec{n}
\end{array}
\end{aligned}
$$

Orientations convention: if you are mowing curve you counterclockwise on the (shadow) carve, than the normal vector to the
 surface char third positive entry.

Exhowstive example:

$$
\vec{F}=\left(y, 2 z, x^{2}\right)
$$

Find work of $\overrightarrow{F_{i}}$ in 3 different ways;
(1) Directly as a line inbgral $\int_{C} \vec{F} \cdot d \vec{r}=\int \vec{F} \cdot \vec{V} d t$ parametrize circle

$$
\begin{gathered}
\vec{r}(t)=(2 \cos t, 2 \sin t, 0) \\
\vec{v}(t)=(-2 \sin t, 2 \cos t, 0) \\
F^{0}=\left(y, 2 z, x^{2}\right)=\left(2 \sin t, 0,4 \cos ^{2} t\right) \\
\int_{0}^{2 \pi}\left(2 \sin t, 0,4 \cos ^{2} t\right) \cdot(-2 \sin t, 2 \cos t, 0) d t \\
= \\
L=
\end{gathered}
$$

(2) option 2: use stokes with disk or the ry plure as surface S

parametrize click:

$$
\frac{\partial \vec{r}}{\partial r} \times \frac{\partial \vec{r}}{\partial \theta}=(0,0, r) \text { instead clue }
$$ to the conventions,

Gad then rewrite n toms of parcumetors

$$
\begin{aligned}
& \text { Stokes } \\
& \text { work }=\iint(\nabla \times \vec{F})=\left(\frac{\partial \vec{r}}{\partial r} \times \frac{\partial \vec{r}}{\partial \sigma}\right) d r d \theta \\
& \vec{F}=\left(y, 2 z, x^{2}\right) \\
& \overrightarrow{\nabla \times \vec{F}}=\operatorname{det}\left(\begin{array}{ccc}
\mathrm{A}^{\top} & \vec{J} & \overrightarrow{k^{3}} \\
\frac{\partial}{\partial x} & \overrightarrow{\partial y} y & \frac{\partial}{\partial z} \\
y & 2 z & x^{2}
\end{array}\right)=(-2,-2 x,-1) \\
& \text { finclit first } \begin{array}{l}
\text { in terms of } x / y \mid z
\end{array}{ }^{2} x^{2}=(-2,-2 r \cos \theta,-1)
\end{aligned}
$$

$$
\begin{aligned}
& r(\theta, r)=(r \cos \theta, r \sin \theta, 0) \begin{array}{l}
0 \leqslant \theta \leqslant 2 \pi \\
0 \leqslant r \leqslant 2
\end{array} \\
& \frac{\partial \vec{r}}{\partial \theta}=(-r \sin \theta, r \cos \theta, 0) \\
& \frac{\partial \vec{r}}{\partial r}=(\cos \theta \sin \theta, 0) \\
& \frac{\partial r}{\partial \theta} \times \frac{\partial \vec{r}}{\partial r}=\operatorname{det}\left(\begin{array}{ccc}
\vec{r} & j & \vec{K} \\
-r \sin \theta & r \cos \theta & 0 \\
\cos \theta & \sin \theta & 0
\end{array}\right) \\
& =\left(0,0,-r \sin ^{2} \theta-r \cos ^{2} \theta\right) \\
& =\left(0,0, \frac{-r}{\text { negative }}\right. \text { third entry } \\
& \text { so we have to use }
\end{aligned}
$$

$$
\begin{gathered}
=\int_{0}^{2 \pi} \int_{0}^{2}(-2,-2 r \cos \theta,-1) \cdot(0,0, r) d r d \theta \\
=\int_{0}^{2 \pi} \int_{0}^{2}-r d r d \theta \\
=\mid-4 \pi
\end{gathered}
$$

option 3 i, Stokers with a different surface
 susfuce

$$
\begin{array}{ll}
z=4-x^{2}-y^{2} & \text { (paraboloid) } \\
z=4-r^{2} & z \geqslant 0
\end{array}
$$

parametrization parabiloid

$$
\begin{aligned}
& \vec{F}(r, \theta)=\left(r \cos \theta, r \sin \theta, 4-r^{2}\right) \quad 0 \leqslant \theta \leqslant 2 \pi \\
& 0 \leq r \leq 2 \\
& \frac{\partial \vec{r}}{\partial r}=(\cos \theta, \sin \theta,-2 r) \\
& \frac{\partial \vec{r}}{\partial \theta}=(-r \sin \theta, r \cos \theta, 0) \\
& \frac{\partial r \vec{j}}{\partial r} \times \frac{\partial \vec{r} \partial}{\partial \sigma}=\left(\begin{array}{ccc}
T j & j^{3} & E^{3} \\
\cos \theta & \sin \theta & -2 r \\
-r \sin \theta & r \cos \theta & 0
\end{array}\right) \\
& =\left(2 r^{2} \cos \theta, 2 r^{2} \sin \theta, r\right) \\
& \nabla \times \vec{F}=(-2,-2 x,-1) \\
& \text { important } \\
& =(-2,-2 r \cos \theta,-1) \\
& \text { that it was } \\
& \text { with positive } \\
& \text { sign } \\
& \int_{0}^{2 \pi} \int_{0}^{2}(-2,-2 r \cos \theta,-1) \cdot\left(2 r^{2} \cos \theta, 2 r^{2} \sin \theta, r\right) d r \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{2}\left(-4 r^{2} \cos \theta-4 r^{3} \cos \theta \sin \theta-r\right) d r d \theta \\
& \text { inequatestos intecrutsto }
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{2 \pi} \int_{0}^{2}-r d r d e \\
& \quad=-4 \pi
\end{aligned}
$$

optron 4 (won't do)

Last Day !!!
Review
Stokes 'Theorem: use stokes' theorem to show that

$$
\int_{c} 2 y d x-3 z d y-x d z
$$

only depends on the area of the region enclosed by the curve.

$$
\int_{c} 2 y d x-3 z d y-x d z=\int_{c} \underbrace{(2 y,-3 z, x)}_{\vec{F}} \cdot \underbrace{(d x c l y, d z)}_{d \overrightarrow{0}}
$$

so we are trying to find the work of $\vec{F}=(2 y,-3 z,-x)$ along this curve $C_{\text {, }}$
$S=$ surface n for Stokes theorem: region of the plare whose boundary is the curve C.

$$
=\iint_{5}(\nabla \times \vec{F}) \cdot\left(\frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{r}}{\partial v}\right) d v d u
$$

curl of \bar{F}^{5} :

$$
\left.\begin{array}{rl}
\vec{F}=(2 y, 3 z,-x) \\
\nabla \times \bar{F}^{3} & =\operatorname{det}\left(2^{3} \quad 2^{3}\right.
\end{array} \overline{2}^{3}\right)
$$

$$
\left.\nabla \times \vec{F}^{0}=(-3,1,-2) \quad \begin{array}{ccc}
\frac{d x}{2 y} & \frac{d y}{} & \partial z \\
\hline z
\end{array} \right\rvert\,
$$

Reminiler: curl of \vec{F} is always compoted interms of x, y, z.
Parametrie the surface so need to parcemetrize the plane
 $2 x+2 y+z=2$ acicle

$$
\begin{aligned}
& \vec{r}(x, y)=(x, y, 2-2 x-2 y) \\
& \frac{\partial r}{\partial x}=(1,0,-2) \\
& \frac{\partial r}{\partial y}=(0,1,-2) \\
& \frac{\partial r}{\partial x} \times \frac{\partial r y}{\partial y}=(2,2,1)
\end{aligned}
$$

Stokes Theorrem

$$
\begin{aligned}
\int_{C} \vec{F} \cdot d \vec{r} & =\iint(\nabla x \vec{F})-\left(\frac{\partial \vec{r}}{\partial x} \times \frac{\partial \vec{r}}{\partial y}\right) d y d x \\
& =\iint(-3,1,-2) \cdot(2,2,1) d y d x
\end{aligned}
$$

$$
=\iint-6 d y d x
$$

$$
=-6 \int_{\substack{\text { Bonds } \\ \text { for } x, y}} 1 d y d x
$$

$$
=-6 \text { area }\left(\begin{array}{c}
\text { Shad au } \\
\text { on } \\
\text { plate } \\
\text { plate }
\end{array}\right)
$$

work $=-6$ area (shadow)

Remark

$$
\underset{\substack{\text { area } \\ \text { shadow } \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \text { work } \\ \hline}}{ }
$$

Another exumple:

$$
\text { Bul region }=\text { - stuff inside cylinder } x^{2}+y^{2}=4
$$

- below paraboloid $z \cdot x^{2}+y^{2}$ - above the ty plane

Ty plane = floor $z=x^{2}+y^{2}$ roof cylinelr = lateral walls

Bounding of $R=$ surface S consisting of

- dickey on the wy plane plus
- parts of the cylinder plus
- part of the paraboloid.

$$
F=(2 y, 9 x y,-4 z)
$$

Use divergence theorem to find the outward flux of \vec{F} troughs surface S.

Flux of $\vec{F} \underset{\substack{\text { divergence } \\ \text { theorem }}}{\text { din }} \iiint_{R} \nabla \cdot \vec{F} d v$

$$
\begin{aligned}
& \nabla \cdot \vec{F}=\frac{\partial}{\partial x}(2 y)+\frac{\partial}{\partial y}(9 x y)+\frac{\partial}{\partial z}(-4 z) \\
& =0+9 x-4 \\
& \nabla \cdot \vec{F}=9 x-4 \quad z=r^{2} \\
& \iiint(9 x-4) d V \\
& \int_{0}^{2 \pi} \int_{0}^{2} \int_{0}^{r^{2}}(9 r \cos \theta-4) \underbrace{r d z d r d \theta}_{-3} \\
& =-32 \pi
\end{aligned}
$$

Another example

surface

Id Region:

- nisicile first octant

$$
(x, y, z) 0)
$$

- inside the Celliptical I cylinder

$$
4 x^{2}+y^{2}=16
$$

- below plure
$y+z=4$

$$
z=4-y
$$

$$
\vec{P}=\left(4 x z,-3 x y 1-2 z^{2}\right)
$$

we divergence theorem to find the flux of \sum^{0} through 5

$$
\begin{aligned}
& \bar{v} \circ \vec{F}=4 z-3 x-4 z \geq-3 x \\
& \text { Aux }=\iiint D \cdot \vec{F} d v=\int_{0}^{2} \int_{0}^{\sqrt{16-4 x^{2}} 4-y} \int_{0}-3 x d z d y d x
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow[F_{2} \text { units } U]{\xrightarrow{4}+x^{2}+y^{2}=16} \\
& \nabla \cdot \vec{F} \text { units } \frac{U}{\text { length }} \\
& \iint(\nabla \cdot \vec{F} d V \text { has unto } \\
& \frac{\mathrm{U}}{\text { length }} \text { - volume } \\
& \text { = Ur area } \\
& \text { Units of file }=\text { Units of } F^{\circ} \\
& \text { or this intogme. units of } \\
& \text { ceres }
\end{aligned}
$$

