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1. Introduction

Let Rn+1,1 be the (n + 2) dimensional Minkowski space, that is, the real vector

space Rn+2 endowed with the Lorentz metric

(1.1) 〈u, v〉 = u0v0 + . . .+ unvn − un+1vn+1

for all u, v ∈ Rn+2. The one sheeted hyperboloid

dSn+1 = {p ∈ Rn+2|〈p, p〉 = 1}

consisting of all unit spacelike vectors and equipped with the induced metric is called

de Sitter space. It is a geodesically complete simply connected Lorentzian manifold

with constant curvature one . De Sitter space corresponds to a vacuum solution of

the Einstein equations with a positive cosmological constant.

Choose a non-zero null vector a ∈ Rn+1,1 in the past half of the null cone with

vertex at the origin, i.e. 〈a, a〉 = 0, 〈a, e〉 > 0 where e = (0, . . . , 0, 1). Then the open

region of de Sitter space defined by

(1.2) H = {p ∈ dSn+1|〈p, a〉 > 0}

is called the steady state space. Since the steady state space is only half the de Sitter

space, it is incomplete. Its boundary as a subset of dSn+1 is the null hypersurface

(1.3) L0 = {p ∈ dSn+1|〈p, a〉 = 0}

which represents the past infinity of H. The spacelike hypersurfaces

(1.4) Lτ = {p ∈ dSn+1|〈p, a〉 = τ, 0 < τ <∞}
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are umbilic hypersurfaces of de Sitter space with constant mean curvature one with

respect to the past oriented unit normal Nτ (p) = −p+ 1
τ
a and foliate the steady state

space. The limit boundary L∞ represents a spacelike future infinity for timelike and

null lines of de Sitter space [8].

In this paper we are interested in finding complete spacelike (i.e. the induced metric

is Riemannian) strictly locally convex immersions ψ : Σn → Hn+1 with constant

curvature and with prescribed (compact) future asymptotic boundary Γ . That is we

want to find Σ satisfying

f(κ[Σ]) = σ(1.5)

∂Σ = Γ(1.6)

where κ[Σ] = (κ1, . . . , κn) denote the positive principal curvatures of Σ (in the in-

duced de Sitter metric with respect to the future oriented unit normal N) and σ > 1

is a constant. This is the exact analogue of the problem considered by Guan and

Spruck [7] in hyperbolic space and as we shall make precise later, the two problems

are essentially dual equivalent problems. Our study was motivated by the beautiful

paper of Montiel [9] who treated the case of mean curvature.

As in our earlier work [10, 12, 4, 5, 6, 7], we prefer to use the half space model

because we find it has great advantages. Following Montiel [9] we can define a half

space model for the steady state space H in the following way. Define the map

φ : Rn+1,1 \ {p ∈ Rn+1,1|〈p, a〉 = 0} → Rn × R = Rn+1 given by

(1.7) φ(p) =
1

〈p, a〉
(p− 〈p, a〉b− 〈p,b〉a, 1)

where b ∈ Rn+2 is a null vector such that 〈a,b〉 = 1( b is in the future directed null

cone and Rn stands for the orthogonal complement of the Lorentz plane spanned by a

and b). Then the image of H by the map φ lies in the half space Rn+1
+ = Rn×R+ and

φ restricted to H is a diffeomorphism to Rn+1
+ . Moreover for v ∈ TpHn+1 = TpdSn+1,

(1.8) (dφ)p(v) =
1

〈p, a〉
(v − 〈v, a〉b− 〈v,b〉a, 0)− 〈v, a〉

〈p, a〉2
(p− 〈p, a〉b− 〈p,b〉a, 1).

It follows that

〈(dφ)p(v), (dφ)p(v)〉 =
1

〈p, a〉2
〈v, v〉 .
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Hence the map φ : Hn+1 → Rn+1
+ = Rn × R+ is an isometry if Rn+1

+ is endowed with

the Lorentz metric

(1.9) g(x,xn+1) =
1

x2
n+1

(dx2 − dx2
n+1),

which is called the half space model for Hn+1. It is important to note that the isom-

etry φ reverses the time orientation.

Thus ∂∞Hn+1 is naturally identified with Rn = Rn×{0} ⊂ Rn+1 and (1.6) may be

understood in the Euclidean sense. For convenience we say Σ has compact asymptotic

boundary if ∂Σ ⊂ ∂∞Hn+1 is compact with respect the Euclidean metric in Rn.

The curvature function f(λ) in (1.5) is assumed to satisfy the fundamental structure

conditions in the convex cone

(1.10) K := K+
n :=

{
λ ∈ Rn : each component λi > 0

}
:

(1.11) f is symmetric,

(1.12) fi(λ) ≡ ∂f(λ)

∂λi
> 0 in K, 1 ≤ i ≤ n,

(1.13) f is a concave function in K,

(1.14) the dual function f ∗(λ) = (f( 1
λ1
, . . . , 1

λn
))−1 is also concave in K,

(1.15) f > 0 in K, f = 0 on ∂K

In addition, we shall assume that f is normalized

(1.16) f(1, . . . , 1) = 1,

(1.17) f is homogeneous of degree one

and satisfies the following more technical assumption

(1.18) lim
R→+∞

f(λ1, · · · , λn−1, λn +R) ≥ 1 + ε0 uniformly in Bδ0(1)

for some fixed ε0 > 0 and δ0 > 0, where Bδ0(1) is the ball of radius δ0 centered at

1 = (1, . . . , 1) ∈ Rn.
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The assumption (1.14) is closely related to the well-known fact [11], [3] , [13] that

the Gauss map n of a spacelike locally strictly convex hypersurface Σn in de Sitter

space is an embedding into hyperbolic space Hn+1 which inverts principal curvatures.

We shall formulate a precise global version of this correspondence (see Theorem 2.2

and Corollary 2.3 in Section 2 ) which will be important for our deliberations. For

the moment note that if f = (σn/σl)
1

n−l , 0 ≤ l < n, defined in K where σl is the nor-

malized l-th elementary symmetric polynomial (σ0 = 1), then f ∗(λ) = (σn−l(λ))
1

n−l .

Also one easily computes that

lim
R→+∞

f(λ1, · · · , λn−1, λn +R) =
(n
l

) 1
n−l

.

Since f is symmetric, by (1.13), (1.16) and (1.17) we have

(1.19) f(λ) ≤ f(1) +
∑

fi(1)(λi − 1) =
∑

fi(1)λi =
1

n

∑
λi in K ⊂ K1

and

(1.20)
∑

fi(λ) = f(λ) +
∑

fi(λ)(1− λi) ≥ f(1) = 1 in K.

Using (1.14), we see that
∑
λ2
i f
∗
i (λ) = (f ∗)2

∑
fi(

1
λ
) ≥ (f ∗)2. Since (f ∗)∗ = f , it

follows that

(1.21)
∑

λ2
i fi ≥ f 2 in K.

In this paper all hypersurfaces in Hn+1 we consider are assumed to be connected

and orientable. If Σ is a complete spacelike hypersurface in Hn+1 with compact as-

ymptotic boundary at infinity, then the normal vector field of Σ is chosen to be the

one pointing to the unique unbounded region in Rn+1
+ \ Σ, and the (both de Sitter

and Minkowski) principal curvatures of Σ are calculated with respect to this normal

vector field.

Because Σ is strictly locally convex and strictly spacelike, we are forced to take

Γ = ∂Ω where Ω ⊂ Rn is a smooth domain and seek Σ as the graph of a “spacelike”

function u(x) over Ω, i.e.

(1.22) Σ = {(x, xn+1) : x ∈ Ω, xn+1 = u(x)}, |∇u| < 1, in Ω.

We will compute the first and second fundamental forms gij, hij with respect to

the induced de Sitter metric as well as g̃ij, h̃ij the corresponding forms in the induced
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Minkowski metric viewing Σ as a graph in the Minkowski space Rn,1 with unit normal

ν. We use

Xi = ei + uien+1, n = uν = u
uiei + en+1

w
,

where w =
√

1− |∇u|2. The first fundamental form gij is then given by

(1.23) gij = 〈Xi, Xj〉D =
1

u2
(δij − uiuj) =

g̃ij
u2
.

For computing the second fundamental form we use

(1.24) Γn+1
ij = − 1

xn+1

δij, Γkin+1 = − 1

xn+1

δik

to obtain

(1.25) ∇Xi
Xj =

(
− δij
xn+1

+ uij −
uiuj
xn+1

)
en+1 −

ujei + uiej
xn+1

.

Then

(1.26)

hij = 〈∇Xi
Xj, uν〉D =

1

uw

(
δij
u
− uij +

uiuj
u
− 2

uiuj
u

)
=

1

u2w
(δij − uiuj − uuij) =

h̃ij
u

+
g̃ij
u2w

.

The principal curvature κi of Σ in de Sitter space are the roots of the characteristic

equation

det(hij − κgij) = u−n det

(
h̃ij −

1

u

(
κ− 1

w

)
g̃ij

)
= 0.

Therefore,

(1.27) κi = uκ̃i +
1

w
, i = 1, · · · , n.

Note that from (1.26), Σ is locally strictly convex if and only if

(1.28) x2 − u2 is (Euclidean) locally strictly convex .

As in our earlier work, we write the Minkowski principal curvatures κ̃[Σ] as the

eigenvalues of the symmetric matrix Ã[u] = {ãij} :

(1.29) ãij := − 1

w
γikuklγ

lj

where

(1.30) γij = δij +
uiuj

w(1 + w)
.
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By (1.27) the de Sitter principal curvatures κ[u] of Σ are the eigenvalues of the

symmetric matrix A[u] = {aij[u]} :

(1.31) aij[u] :=
1

w

(
δij − uγikuklγlj

)
.

Define

(1.32) F (A) := f(κ[A]) and G(D2u,Du, u) := F (A[u])

where A[u] = {aij[u]} is given by (1.31). Problem (1.5)-(1.6) then reduces to a

Dirichlet problem for a fully nonlinear second order equation

(1.33) G(D2u,Du, u) = σ > 1, u > 0 in Ω ⊂ Rn

with the boundary condition

(1.34) u = 0 on ∂Ω.

We seek solutions of equation (1.33) satisfying the spacelike condition (1.11) and

(1.28). Following the literature we call such solutions admissible. By [2] condi-

tion (1.28) implies that equation (1.33) is elliptic for admissible solutions. Our goal is

to show that the Dirichlet problem (1.33)-(1.34) admits smooth admissible solutions

for all σ > 1 which is optimal.

Our main result of the paper may be stated as follows.

Theorem 1.1. Let Γ = ∂Ω×{0} ⊂ ∂∞Hn+1 where Ω is a bounded smooth domain in

Rn. Suppose that σ > 1 and that f satisfies conditions (1.11)-(1.18) with K = K+
n .

Then there exists a complete locally strictly convex spacelike hypersurface Σ in Hn+1

satisfying (1.5)-(1.6) with uniformly bounded principal curvatures

(1.35) |κ[Σ]| ≤ C on Σ.

Moreover, Σ is the graph of an admissible solution u ∈ C∞(Ω)∩C1(Ω̄) of the Dirichlet

problem (1.33)-(1.34). Furthermore, u2 ∈ C∞(Ω) ∩ C1,1(Ω) and

(1.36)
u|D2u| ≤ C in Ω,√

1− |Du|2 =
1

σ
on ∂Ω

As a concrete application we have existence for the canonical curvature functions.
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Corollary 1.2. Let Γ = ∂Ω× {0} ⊂ ∂∞Hn+1 where Ω is a bounded smooth domain

in Rn. Then there exists a complete locally strictly convex spacelike hypersurface Σ in

Hn+1 satisfying

(σn/σl)
1

n−l = σ > 1, 0 ≤ l < n

with ∂Σ = Γ and uniformly bounded principal curvatures

(1.37) |κ[Σ]| ≤ C on Σ.

Moreover, Σ is the graph of an admissible solution u ∈ C∞(Ω)∩C1(Ω̄) of the Dirichlet

problem (1.33)-(1.34). Furthermore, u2 ∈ C∞(Ω) ∩ C1,1(Ω) and

(1.38)
u|D2u| ≤ C in Ω,√

1− |Du|2 =
1

σ
on ∂Ω

As we mentioned earlier, in Section 2 we prove strong duality theorems (see Theo-

rem 2.2 and Corollary 2.3 ) which allows us to transfer our existence results for Hn+1

in [7] to Hn+1 and conversely. In particular we have

Corollary 1.3. Let Γ = ∂Ω× {0} ⊂ ∂∞Hn+1 where Ω is a bounded smooth domain

in Rn. Then there exists a complete locally strictly convex spacelike hypersurface Σ in

Hn+1 satisfying

(σl)
1
l = σ > 1, 1 ≤ l ≤ n

with ∂Σ = Γ and uniformly bounded principal curvatures

(1.39) |κ[Σ]| ≤ C on Σ.

Moreover, Σ is the graph of an admissible solution u ∈ C∞(Ω)∩C1(Ω̄) of the Dirichlet

problem (1.33)-(1.34). Furthermore, u2 ∈ C∞(Ω) ∩ C1,1(Ω) and

(1.40)
u|D2u| ≤ C in Ω,√

1− |Du|2 =
1

σ
on ∂Ω

Further, if l = 1 or l = 2 (mean curvature and normalized scalar curvature) we have

uniqueness among convex solutions and even among all solutions convex or not if Ω

is simple

The uniqueness part of Corollary 1.3 follows from the uniqueness Theorem 1.6 of [7]

and a continuity and deformation argument like that used in [12]. Note that Montiel

[9] proved existence for H = σ > 1 assuming ∂Ω is mean convex. Our result shows
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that for arbitrary Ω there is always a locally strictly convex solution. If Ω is simple

and mean convex the solutions constructed by Montiel must agree with the ones we

construct.

Transferring by duality the results of Corollary 1.2 to Hn+1 gives the mildly sur-

prising

Corollary 1.4. Let Γ = ∂Ω × {0} ⊂ ∂∞Hn+1 where Ω is a bounded smooth domain

in Rn. Then there exists a complete locally strictly convex hypersurface Σ in Hn+1

satisfying

(σl)
1
l = σ−1 ∈ (0, 1), 1 ≤ l < n

with ∂Σ = Γ and uniformly bounded principal curvatures

(1.41) |κ[Σ]| ≤ C on Σ.

Moreover, Σ is the graph of an admissible solution v ∈ C∞(Ω)∩C1(Ω̄) of the Dirichlet

problem dual to (1.33)-(1.34). Furthermore, u2 ∈ C∞(Ω) ∩ C1,1(Ω) and

(1.42)

u|D2u| ≤ C in Ω,

1√
1 + |Du|2

=
1

σ
on ∂Ω

Equation (1.33) is singular where u = 0. It is therefore natural to approximate the

boundary condition (1.34) by

(1.43) u = ε > 0 on ∂Ω.

When ε is sufficiently small, we shall show that the Dirichlet problem (1.33),(1.43) is

solvable for all σ > 1.

Theorem 1.5. Let Ω be a bounded smooth domain in Rn and σ ∈ (1,∞). Suppose f

satisfies conditions (1.11)-(1.18) with K = K+
n . Then for any ε > 0 sufficiently small,

there exists an admissible solution uε ∈ C∞(Ω̄) of the Dirichlet problem (1.33),(1.43)

. Moreover, uε satisfies the a priori estimates

(1.44)
√

1− |Duε|2 =
1

σ
+O(ε) on ∂Ω

and

(1.45) uε|D2uε| ≤ C in Ω

where C is independent of ε.
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In the proof of Theorem 1.5 we mostly follow the method of [5], [7] except that we

will appeal to the duality results of Section 2 to use the global maximal principle of

[7] to control the principal curvatures and prove the first inequality in (1.36). Because

there is no a priori uniqueness (i.e Gu ≥ 0 need not hold) it is not sufficient to derive

estimates just for solutions of (1.33) with constant right hand side σ, one must also

consider perturbations. However to avoid undue length and tedious repetition, we will

prove the estimates for solutions of constant curvature σ as the necessary modifica-

tions are straightforward (see [5]).

By Theorem 1.5, the hyperbolic principal curvatures of the admissible solution uε

of the Dirichlet problem (1.33),(1.43) are uniformly bounded above independent of ε.

Since f(κ[uε]) = σ and f = 0 on ∂K+
n , the hyperbolic principal curvatures admit a

uniform positive lower bound independent of ε and therefore (1.33) is uniformly el-

liptic on compact subsets of Ω for the solution uε. By the interior estimates of Evans

and Krylov, we obtain uniform C2,α estimates for any compact subdomain of Ω. The

proof of Theorem 1.1 is now routine.

An outline of the contents of the paper are as follows. Section 2 contains the impor-

tant duality results, Theorem 2.2 and Corollary 2.3. Section 3 contains preliminary

formulas and computations that are used in Section 4 to prove the asymptotic angle

result Theorem 4.2. In Section 5 we use the linearized operator to bound the principal

curvatures of a solution on the boundary. Here is where the condition (1.18) comes

into play. Finally in Section 6 we use duality to establish global curvature bounds and

complete the proof of Theorem 1.5. The use of duality to prove this global estimate

is unusual but seems to be necessary since F (A) is a concave function of A but G is

a convex function of {uij}.

2. The Gauss map and Legendre transform

Let ψ : Σn → Hn+1 be a strictly locally convex spacelike immersion with pre-

scribed (compact) boundary Γ either in the timeslice Lτ or in L∞ = ∂∞H. We are

constructing such Σn as the graph of an admissible function u :

S = {(x, u(x)) ∈ Rn+1
+ : u ∈ C∞(Ω), u(x) > 0, |∇u(x)| < 1} ,
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where Ω is a smooth bounded domain in Rn. We know that the Gauss map

n : Σn → Hn+1

takes values in hyperbolic space. Using the map φ defined in (1.7) that was used

to identify the de Sitter and upper halfspace models of the steady state space Hn+1,

Montiel [9] showed that if we use the upper halfspace representation for both H and

Hn+1, then the Gauss map n corresponds to the map

L : S → Hn+1

defined by

(2.1) L(x, u(x)) = (x− u(x)∇u(x), u(x)
√

1− |∇u|2) x ∈ Ω .

We now identify the map L in terms of a hodograph and associated Legendre trans-

form. Define the map y = ∇p(x) : Ω ⊂ Rn → Rn by

(2.2) y = ∇p(x), x ∈ Ω where p(x) = 1
2
(x2 − u(x)2).

Note that p is strictly convex in the Euclidean sense by (1.28) and hence the map

y is globally one to one. Therefore v(y) := u(x)
√

1− |∇u(x)|2 is well defined in

Ω∗ := y(Ω). The associated Legendre transform is the function q(y) defined in Ω∗ by

p(x) + q(y) = x · y or q(y) = −p(x) + x · ∇p(x).

Lemma 2.1. The Legendre transform q(y) is given by

q(y) =
1

2
(y2 + v(y)2) where v(y) := u(x)

√
1− |∇u(x)|2 .

Moreover,
√

1 + |∇v(y)|2 = (1−|∇u|2)−
1
2 and u(x) = v(y)

√
1 + |∇v(y)|2. Therefore

x = ∇q(y), (qij(y)) = (pij(x))−1 and the inverse map L∗ of L is given by L∗(y, v(y)) =

(x, u(x)).

Proof. We calculate

p(x) + q(y) = 1
2
(x2 − u(x)2) + 1

2
(y2 + v(y)2)

= 1
2
(x2 − u(x)2) + 1

2
(x2 − 2u(x)x · ∇u(x) + u2|∇u|2) + 1

2
(u2(1− |∇u(x)|2)

= x2 − u(x)x · ∇u(x) = x · y ,

as required. It is then standard that x = ∇q(y) and (qij(y)) = (pij(x))−1. Then

x = ∇q(y) = y + v∇v(y) and y = x − u(x)∇u(x) implies u∇u = v∇v so u2|∇u|2 =
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v2|∇v|2 = u2(1− |∇u|2)|∇v|2 and so |∇v(y)|2 = |∇u(x)|2
1−|∇u(x)|2 . Therefore,√

1 + |∇v(y)|2 = (1− |∇u|2)−
1
2 and u(x) = v(y)

√
1 + |∇v(y)|2 .

�

Theorem 2.2. Let L be defined by (2.1) and let y be defined by (2.2). Then the image

of S by L is the locally strictly convex graph (with respect to the induced hyperbolic

metric)

S∗ = {(y, v(y)) ∈ Rn+1
+ : v ∈ C∞(Ω∗), v(y) > 0},

with principal curvatures κ∗i = (κi)
−1 . Here κi > 0, i = 1, . . . , n are the principal

curvatures of S with respect to the induced de Sitter metric. Moreover the inverse

map L∗ : S∗ → S defined by

L∗(y, v(y)) = (y + v(y)∇v(y), v(y)
√

1 + |∇v(y)|2) y ∈ Ω∗

is the dual Legendre transform and hodograph map x = ∇q(y).

Proof. By Lemma 2.1 it remains only to show κ∗i = (κi)
−1 . The principal curvatures

of S, S∗ are respectively the eigenvalues of the matrices

A[u] = (γij)(hij)(γ
ij), A[v] = (γ∗ij)(h∗ij)(γ

∗ij) ,

where

g∗ij =
δij + vivj

v2
, (γ∗ij) = (g∗ij)

− 1
2 , h∗ij =

δij + vvij + vivj

v2
√

1 + |∇v|2
.

By Lemma 2.1,

h∗ij =
qij

v2
√

1 + |∇v|2
=
u2
√

1− |∇u|2
v2u2

qij =
1

u2v2
(hij)

−1 ,

g∗ij =
δij + vivj

v2
=
δij +

uiuj
1−|∇u|2

v2
=

gij

u2v2
, (γ∗ij) = uv(γij)−1 ,

and therefore A[v] = (A[u])−1 completing the proof. �

Corollary 2.3. If the graph S = {(x, u(x)) : x ∈ Ω} is a strictly locally convex space-

like graph with constant curvature f(κ) = σ > 1 in the steady state space Hn+1 with

∂∞Hn+1 = Γ = Ω, then the dual graph S∗ = {(x − u(x)∇u(x), u(x)
√

1 + |∇u|2) =

(y, v(y)) : y ∈ Ω∗} is a strictly locally convex graph of constant curvature f ∗(κ∗) = σ−1

in Hn+1 with ∂∞Hn+1 = Γ = ∂Ω. The converse holds as well.
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3. Formulas on hypersurfaces

In this section we will derive some basic identities on a hypersurface by comparing

the induced metric in steady state space Hn+1 ⊂ dSn+1 and Minkowski space.

Let Σ be a hypersurface in Hn+1. We shall use g and ∇ to denote the induced

metric and Levi-Civita connection on Σ, respectively. As Σ is also a submanifold of

Rn,1, we shall usually distinguish a geometric quantity with respect to the Minkowski

metric by adding a ‘tilde’ over the corresponding quantity. For instance, g̃ denotes

the induced metric on Σ from Rn,1, and ∇̃ is its Levi-Civita connection.

Let x be the position vector of Σ in Rn,1 and set

u = x · e

where e= (0, · · · , 0, 1) is the unit vector in the positive xn+1 direction in Rn+1, and

‘·’ denotes the Euclidean inner product in Rn+1. We refer u as the height function of

Σ.

Throughout the paper we assume Σ is orientable and let n be a (global) unit normal

vector field to Σ with respect to the de Sitter metric. This also determines a unit

normal ν to Σ with respect to the Minkowski metric by the relation

ν =
n

u
.

We denote νn+1 = e · ν.

Let (z1, . . . , zn) be local coordinates and

τi =
∂

∂zi
, i = 1, . . . , n.

The de Sitter and Minkowski metrics of Σ are given by

gij = 〈τi, τj〉D, g̃ij = 〈τi, τj〉M = u2gij,

while the second fundamental forms are

(3.1)
hij = 〈Dτiτj,n〉D = −〈Dτin, τj〉D,
h̃ij = 〈ν, D̃τiτj〉M = −〈τj, D̃τiν〉M ,

where D and D̃ denote the Levi-Civita connection of Hn+1 and Rn,1, respectively, and

〈 , 〉D, 〈 , 〉M denote the corresponding inner product.
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The Christoffel symbols Γkij and Γ̃kij are related by the formula

(3.2) Γkij = Γ̃kij −
1

u
(uiδkj + ujδik − g̃klulg̃ij).

It follows that for v ∈ C2(Σ)

(3.3) ∇ijv = vij − Γkijvk = ∇̃ijv +
1

u
(uivj + ujvi − g̃klukvlg̃ij)

where (and in sequel)

vi =
∂v

∂zi
, vij =

∂2v

∂zizj
, etc.

In particular,

(3.4) ∇iju = ∇̃iju+
2uiuj
u
− 1

u
g̃klukulg̃ij

and

(3.5) ∇ij
1

u
= − 1

u2
∇̃iju+

1

u3
g̃klukulg̃ij.

Moreover,

(3.6) ∇ij
v

u
= v∇ij

1

u
+

1

u
∇̃ijv −

1

u2
g̃klukvlg̃ij.

In Rn,1,

(3.7)
g̃klukul = |∇̃u|2 = (νn+1)2 − 1

∇̃iju = −h̃ijνn+1.

Therefore, by (1.26) and (3.5),

(3.8)
∇ij

1

u
= − 1

u2
∇̃iju+

1

u3
g̃ij
[
(νn+1)2 − 1

]
=

1

u

(
hijν

n+1 − gij
)
.

We note that (3.6) and (3.8) still hold for general local frames τ1, . . . , τn. In particular,

if τ1, . . . , τn are orthonormal in the de Sitter metric, then gij = δij and g̃ij = u2δij.

We now consider equation (1.1) on Σ. Let A be the vector space of n× n matrices

and

A+ = {A = {aij} ∈ A : λ(A) ∈ K+
n },

where λ(A) = (λ1, . . . , λn) denotes the eigenvalues of A. Let F be the function defined

by

(3.9) F (A) = f(λ(A)), A ∈ A+
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and denote

(3.10) F ij(A) =
∂F

∂aij
(A), F ij,kl(A) =

∂2F

∂aij∂akl
(A).

Since F (A) depends only on the eigenvalues of A, if A is symmetric then so is the

matrix {F ij(A)}. Moreover,

F ij(A) = fiδij

when A is diagonal, and

(3.11) F ij(A)aij =
∑

fi(λ(A))λi = F (A),

(3.12) F ij(A)aikajk =
∑

fi(λ(A))λ2
i .

Equation (1.1) can therefore be rewritten in a local frame τ1, . . . , τn in the form

(3.13) F (A[Σ]) = σ

where A[Σ] = {gikhkj}. Let F ij = F ij(A[Σ]), F ij,kl = F ij,kl(A[Σ]).

Lemma 3.1. Let Σ be a smooth hypersurface in Hn+1 satisfying equation (1.1). Then

in a local orthonormal frame,

(3.14) F ij∇ij
1

u
=
σνn+1

u
− 1

u

∑
fi.

and

(3.15) F ij∇ij
νn+1

u
= −σ

u
+
νn+1

u

∑
fiκ

2
i .

Proof. The first identity follows immediately from (3.8), (3.11) and assumption (1.17).

To prove (3.15) we recall the identities in Rn,1

(3.16)
(νn+1)i = −h̃ilg̃lkuk,
∇̃ijν

n+1 = −g̃kl(−νn+1h̃ilh̃kj + ul∇̃kh̃ij).

By (3.10), (3.11), (3.12), and g̃ik = δjk/u
2 we see that

(3.17)

F ij g̃klh̃ilh̃kj =
1

u2
F ijh̃ikh̃kj

=F ij(hikhkj − 2νn+1hij + (νn+1)2δij)

= fiκ
2
i − 2νn+1σ + (νn+1)2

∑
fi.

As a hypersurface in Rn,1, it follows from (1.27) that Σ satisfies

f(uκ̃1 + νn+1, . . . , uκ̃n + νn+1) = σ,
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or equivalently,

(3.18) F ({g̃ik(uh̃kj + νn+1g̃kj)}) = σ.

Differentiating equation (3.18) and using g̃ik = u2δik, g̃
ik = δik/u

2, we obtain

(3.19) F ij(u∇̃kh̃ij + ukh̃ij + (νn+1)ku
2δij) = 0.

That is,

(3.20)

F ij∇̃kh̃ij+ (νn+1)ku
∑

F ii = −uk
u
F ijh̃ij

= − ukF ij(hij − νn+1δij)

= − uk
(
σ − νn+1

∑
fi

)
.

Finally, combining (3.6), (3.14), (3.16), (3.17), (3.20), and the first identity in (3.7),

we derive

(3.21)

F ij∇ij
νn+1

u
= νn+1F ij∇ij

1

u
+
|∇̃u|2

u
F ijh̃ij −

νn+1

u3
F ijh̃ikh̃kj

=
νn+1

u

(
νn+1σ −

∑
fi

)
+
|∇̃u|2

u

(
σ − νn+1

∑
fi

)
+
νn+1

u

(
fiκ

2
i − 2νn+1σ + (νn+1)2

∑
fi

)
= − σ

u
+
νn+1

u

∑
fiκ

2
i .

This proves (3.15). �

4. The asymptotic angle maximum principle and gradient estimates

In this section we show that the upward unit normal of a solution tends to a fixed

asymptotic angle on approach to the asymptotic boundary and that this holds ap-

proximately for the solutions of the approximate problem.. This implies a global

(spacelike) gradient bound on solutions.

Our estimates are all based on the use of special barriers (see section 3 of [9]).

These correspond to horospheres for the dual problem in hyperbolic space and our

argument follows that of section 3 of [6]. Let

Q(r, c) = {x ∈ Rn,1 | 〈x− c, x− c〉M ≤ −r2}
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be a ball of radius r centered at c in Minkowski space, where c ∈ Rn+1. More-

over, let Q+(r, c) denote the region above the upper hyperboloid and Q−(r, c) de-

note the region below the lower hyperboloid. If we choose a = (a′,−rσ), then

S+(r, a) = ∂Q+(r, a) ∩ Hn+1 is an umbilical hypersurface in Hn+1 with constant

curvature σ with respect to its upward normal vector. For convenience we sometimes

call S+(r, a) an upper hyperboloid of constant curvature σ in Hn+1. Similarly, when

we choose b = (b′, rσ), then S−(r, b) = ∂Q−(r, b) ∩ Hn+1 is the lower hyperboloid of

constant curvature σ with respect to its upward normal vector. These hyperboloids

serve as useful barriers.

Now let Σ be a hypersurface in Hn+1 with ∂Σ ⊂ P (ε) := {xn+1 = ε} so Σ separates

{xn+1 ≥ ε} into an inside (bounded) region and outside (unbounded) one. Let Ω be

the region in Rn × {0} such that its vertical lift Ωε to P (ε) is bounded by ∂Σ (and

Rn \ Ω is connected and unbounded). (It is allowable that Ω have several connected

components.) Suppose κ[Σ] ∈ K+
n and f(κ) = σ ∈ (1,∞) with respect to its outer

normal.

Lemma 4.1.
(i) Σ ∩ {xn+1 < ε} = ∅.

(ii) If ∂Σ ⊂ Q−(r, b), then Σ ⊂ Q−(r, b).

(iii) If Q−(r, b) ∩ P (ε) ⊂ Ωε, then Q−(r, b) ∩ Σ = ∅.
(iv) If Q+(r, a) ∩ Ωε = ∅, then Q+(r, a) ∩ Σ = ∅.

Proof. For (i) let c = minx∈Σ xn+1 and suppose 0 < c < ε. Then the horizontal plane

P (c) satisfies f(κ) = 1 with respect to the upward normal, lies below Σ, and has an

interior contact point. Then f(κ[Σ]) ≤ 1 at this point, which leads to a contradiction

(notice that in the Euclidean case we have the reverse inequality).

For (ii), (iii), (iv) we consider the family {hs}s∈R of isometries of Hn+1 consisting

of Euclidean homotheties. We perform homothetic dilations from (a′, 0) and (b′, 0)

respectively, and then use the maximum principle. For (ii), choose s0 big enough

so that hs0(Q−(r, b)) contains Σ and then decrease s. Since the curvature of Σ and

S−(r, b) are calculated with respect to their outward normals and both hypersurfaces

satisfy f(κ) = σ, there cannot be a first contact.

For (iii) and (iv) we shrink Q+(r, a) and Q−(r, b) until they are respectively inside

and outside Σ. When we expand Q−(r, b) there cannot be a first contact as above.
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Now decrease s to a certain value s1 ∈ R such that hs1(Q+(r, a)) is disjoint from Σ

(outside of). Then we increase s1 and suppose there is a first interior contact. The

outward normal to Σ at this contact point is the upward normal to S+(r, a). Since the

curvatures of S+(r, a) are calculated with respect to the upward normal and S+(r, a)

satisfies f(κ) = σ, we have a contradiction of the maximum principle. �

Theorem 4.2. Let Σ be a smooth strictly locally convex spacelike hypersurface in

Hn+1 satisfying equation (1.1). Suppose Σ is globally a graph:

Σ = {(x, u(x)) : x ∈ Ω}

where Ω is a domain in Rn ≡ ∂Hn+1. Then

(4.1) F ij∇ij
σ − νn+1

u
=
σ

u

(
1−

∑
fi

)
+
νn+1

u

(
σ2 −

∑
fiκ

2
i

)
≤ 0

and so,

(4.2)
σ − νn+1

u
≥ inf

∂Σ

σ − νn+1

u
on Σ.

Moreover, if u = ε > 0 on ∂Ω, then there exists ε0 > 0 depending only on ∂Ω, such

that for all ε ≤ ε0,

(4.3)
r1

√
σ2 − 1

r2
1 − ε2

+
ε(σ − 1)

r2
1 − ε2

>
σ − νn+1

u
> −r2

√
σ2 − 1

r2
2 − ε2

− ε(1 + σ)

r2
2 − ε2

on ∂Σ

where r2, r1 are the maximal radius of exterior and interior spheres to ∂Ω, respectively.

In particular, νn+1 → σ on ∂Σ as ε→ 0.

Proof. It’s easy to see that (4.1) follows from equations (3.14), (3.15) and (1.20),

(1.21) . Thus, (4.2) follows from the maximum principle.

In order to prove (4.3), we first assume r2 <∞. Fix a point x0 ∈ ∂Ω and let e1 be

the outward pointing unit normal to ∂Ω at x0. Let S+(R2, a), S−(R1, b) be the upper

and lower hyperboloid with centers a = (x0 + r2e1,−R2σ), b = (x0 − r1e1, R1σ) and

radii R2, R1 respectively satisfying

r2
2 − (R2σ + ε)2 = −R2

2, r2
1 − (R1σ − ε)2 = −R2

1.

Then Q−(R1, b) ∩ P (ε) is an n-ball of radius r1 internally tangent to ∂Ωε at x0 while

Q+(R2, a)∩P (ε) is an n-ball of radius r2 externally tangent to ∂Ωε at x0. By Lemma

4.1 (iii) and (iv), Q± ∩ Σ = ∅. Hence

(4.4)
σR1 − u
R1

< νn+1 <
σR2 + u

R2

.
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Moreover, by a simple calculation we have

(4.5)
1

R1

=
−εσ +

√
r2

1(σ2 − 1) + ε2

r2
1 − ε2

<
r1

√
σ2 − 1

r2
1 − ε2

+
ε(σ − 1)

r2
1 − ε2

,

(4.6)
1

R2

=
εσ +

√
(σ2 − 1)r2

2 + ε2

r2
2 − ε2

<
r2

√
σ2 − 1

r2
2 − ε2

+
ε(1 + σ)

r2
2 − ε2

.

Finally (4.3) follows from (4.4), (4.5) and (4.6).

If r2 = ∞, in the above argument one can replace r2 by any r > 0 and then let

r →∞. �

From Theorem 4.2 we conclude

Corollary 4.3. Let Ω be a bounded smooth domain in Rn and σ > 1. Suppose f

satisfies conditions (1.11)-(1.18) with K = K+
n . Then for any ε > 0 sufficiently

small, any admissible solution uε ∈ C∞(Ω̄) of the Dirichlet problem (1.33),(1.43)

satisfies the apriori estimate

(4.7) |∇uε| ≤ C < 1 in Ω

where C is independent of ε.

5. The linearized operator and boundary estimates for second

derivatives.

In this section we establish boundary estimates for second derivatives of admissible

solutions.

Theorem 5.1. Suppose that f satisfies conditions (1.11)-(1.18) with K = K+
n . If ε

is sufficiently small, then

(5.1) u|D2u| ≤ C on ∂Ω

where C is independent of ε.

Define the linearized operator of G at u (recall (1.32))

(5.2) L = Gst∂s∂t +Gs∂s +Gu

where

(5.3) Gst =
∂G

∂ust
, Gs =

∂G

∂us
, Gu =

∂G

∂u
.
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Note that

(5.4) Gst = − u
w
F ijγisγjt, Gstust = uGu = σ −

∑
fi
w

.

After some straightforward but tedious calculations we derive

(5.5) Gs =
us
w2
σ + 2

F ijaik
w(1 + w)

(
ukγ

sjw + ujγ
ks
)
− 2

F ijuiγ
sj

w2
.

It follows that

Lemma 5.2. Suppose that f satisfies (1.7), (1.8), (1.10) and (1.12). Then

(5.6) |Gs| ≤ C0(1 +
∑

fi),

where C0 denotes a controlled constant independent of ε.

Since γsjus = uj/w,

(5.7) Gsus =
1− w2

w2
σ + 2

F ijaikukuj
w2

− 2
F ijuiuj
w3

.

Let

(5.8) L′ = −L+Gu = −Gst∂s∂t −Gs∂s.

Then from (5.4) and (5.7) we obtain

(5.9)
L′u =

1

w

∑
fi −

σ

w2
− 2

F ijaikukuj
w2

+ 2
F ijuiuj
w3

≤ C1 + C2

∑
fi.

In the following we denote by C1, C2, . . . controlled constants independent of ε.

We will employ a barrier function of the form

(5.10) v = u− ε+ td−Nd2

where d is the distance function from ∂Ω, and t, N are positive constants to be

determined. We may take δ > 0 small enough so that d is smooth in Ωδ = Ω∩Bδ(0).

Lemma 5.3. For δ = c0ε, N = C4

ε
, t = c0C4 with C4 sufficiently large and c0 suffi-

ciently small independent of ε,

L′v ≤ −(1 +
∑

fi) in Ωδ, v ≥ 0 on ∂Ωδ.
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Proof. Since |Dd| = 1 and −CI ≤ D2d ≤ CI, we have

(5.11)
|L′d| =

∣∣−Gstdst −Gsds
∣∣

≤ C3(1 +
∑

fi).

Furthermore, since dn(0) = 1, dβ(0) = 0 for all β < n, we have, when δ > 0 sufficiently

small,

(5.12)

−Gstdsdt ≥ −Gnnd2
n − 2

∑
β<n

Gnβdndβ

≥ −1

2

∑
Gnn =

u

2w

∑
F ijγinγjn

≥ u

2nw

∑
F ii.

Therefore,

(5.13)

L′v = L′u+ (t− 2Nd)L′d− 2NGstdsdt

≤ C1 + C2

∑
fi + C3(t+ 2Nδ)(1 +

∑
fi)−

Nε

nw

∑
fi

≤ (C1 + tC3 + 2NδC3 −
Nε

2n
) + (C2 + tC3 + 2NδC3 −

Nε

2n
)
∑

fi.

Now if we require 0 < c0 <
1

18nC3
and C4 � 3nmax{C1, C2} + 3n. let N = C4/ε,

t = C4c0, δ = c0ε, then Lemma 5.3 is proved. �

The following lemma is proven in [6]; it applies to our situation since horizontal

rotations are isometries for Hn+1.

Lemma 5.4. Suppose that f satisfies (1.7), (1.8), (1.10) and (1.12). Then

(5.14) L(xiuj − xjui) = 0, Lui = 0, 1 ≤ i, j ≤ n.

Proof of Theorem 5.1. Consider an arbitrary point on ∂Ω, which we may assume to

be the origin of Rn and choose the coordinates so that the positive xn axis is the

interior normal to ∂Ω at the origin. There exists a uniform constant r > 0 such that

∂Ω ∩Br(0) can be represented as a graph

xn = ρ(x′) =
1

2

∑
α,β<n

Bαβxαxβ +O(|x′|3), x′ = (x1, · · · , xn−1).

Since u = ε on ∂Ω, we see that u(x′, ρ(x′)) = ε and

uαβ(0) = −unραβ, α, β < n.
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Consequently,

|uαβ(0)| ≤ C|Du(0)|, α, β < n,

where C depends only on the (Euclidean maximal principal) curvature of ∂Ω.

Next, following [1] we consider for fixed α < n the approximate tangential operator

(5.15) T = ∂α +
∑
β<n

Bβα(xβ∂n − xn∂β).

We have

(5.16)
|Tu| ≤ C, in Ω ∩Bδ(0)

|Tu| ≤ C|x|2, on ∂Ω ∩Bδ(0)

since u = ε on ∂Ω. By Lemma 5.4 and (5.4), (5.16),

(5.17)

|L′(Tu)| = |−LTu+GuTu|
= |GuTu|

≤ C5

ε
(1 +

∑
fi).

A straightforward calculation gives

(5.18)

∣∣L′|x|2∣∣ =
∣∣∣−2

∑
Gss − 2

∑
xsG

s
∣∣∣

≤ C6ε(1 +
∑

fi).

Now let

Φ =
A

ε
v +

C

δ2
|x|2 ± Tu.

By Lemma 5.3 and (5.17), (5.18),

(5.19) L′Φ ≤ −A
ε

(1 +
∑

fi) +
C6C

c0
2ε

(1 +
∑

fi) +
C5

ε
(1 +

∑
fi) in Ω ∩Bδ

Choosing A� C5 + C6C
c02

makes L′Φ ≤ 0 in Ω ∩ Bδ. It is also easy to see that Φ ≥ 0

on ∂(Ω ∩Bδ).

By the maximum principle Φ ≥ 0 in Ω ∩ Bδ. Since Φ(0) = 0, we have Φn(0) ≥ 0

which gives

(5.20) |uαn(0)| ≤ A(un(0) + C4c0)

ε
≤ C

ε
.

Finally to estimate |unn(0)| we use our hypothesis (1.18) and Theorem 4.2. We

may assume [uαβ(0)], 1 ≤ α, β < n, to be diagonal. Note that uα(0) = 0 for α < n.
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We have at x = 0

A[u] =
1

w


1− uu11 0 · · · −uu1n

w
0 1− uu22 · · · −uu2n

w
...

...
. . .

...
−uun1

w
−uun2

w
· · · 1− uunn

w2

 .
By Lemma 1.2 in [2], if |εunn(0)| is very large, the eigenvalues λ1, · · · , λn of A[u]

are asymptotically given by

(5.21)

λα =
1

w
(1 + |εunn(0)|) + o(1), α < n

λn =
|εunn(0)|

w3

(
1 +O

(
1

|εunn(0)|

))
.

If |εunn(0)| ≥ R where R is a controlled constant only depends on σ. By the hypoth-

esis (1.18) and Theorem 4.2,

σ =
1

w
F (wA[u](0)) ≥ (σ − Cε)F (wA[u](0)) ≥ (σ − Cε)(1 + ε0) ≥ σ(1 +

ε0

2
)

leads to a contradiction. Therefore

|unn(0)| ≤ R

ε

and the proof is complete. �

6. Completion of the proof of Theorem 1.5

As we emphasized in the introduction, we will derive a global curvature estimate

for solutions of the Dirichlet problem (1.33),(1.43) . In Theorem 5.1 of the previous

section we have shown that the principal curvatures satisfy 0 < κi ≤ C, i = 1, . . . , n

on Γ = ∂Ω, hence lie in a compact set E of the cone K. Since f(κ) = σ and f(κ)→ 0

uniformly on E when any κi → 0, it follows that

(6.1)
1

C
< κi ≤ C on Γ .

We now appeal to duality. By Corollary 2.3, the dual graph S∗ satisfies f ∗(κ∗) = 1
σ

and by (6.1)

(6.2)
1

C
< κ∗i ≤ C on Γ∗ = L(Γ) .
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Hence by the global maximum principal for principal curvatures proved in Theorem

4.1 of [7],

(6.3)
1

C
< κ∗i ≤ C on S∗ .

Once more using duality to return to the graph S, we obtain the desired global

estimate

(6.4)
1

C
< κi ≤ C on S .

The proof of Theorem 1.1 follows by letting ε→ 0 as mentioned in the introduction.
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