1 Prelimilaries

1.1 A review of linear algebra

Vector Space Let \mathbb{R} be the scalar field of real numbers. We consider only real vector spaces. Let $\overline{V_{n}}$ be a set. V_{n} is a vector space (also called a linear space) if it is equipped with two operations:

$$
\begin{array}{ll}
\text { scalar product } & I R \times V_{n} \rightarrow V_{n} \\
\text { vector addition } & V_{n} \times V_{n} \rightarrow V_{n},
\end{array}
$$

and it is closed under these two operations. That is, V_{n} is a vector space if $\forall \alpha, \beta \in \mathbb{R} \& \forall \mathbf{a}, \mathbf{b} \in V_{n}$,

$$
\alpha \mathbf{a}+\beta \mathbf{b} \in V_{n} .
$$

The vector space V_{n} is n-dimensional if we can find a basis $\left\{\mathbf{e}_{1}, \cdots, \mathbf{e}_{n}\right\} \subset V_{n}$ such that for any $\mathbf{a} \in V_{n}$, we have a unique decomposition

$$
\mathbf{a}=\sum_{i=1}^{n} a_{i} \mathbf{e}_{i}
$$

where $a_{i} \in \mathbb{R}(i=1, \cdots n)$ are the components (coordinates) of vector a under the basis $\left\{\mathbf{e}_{1}, \cdots, \mathbf{e}_{n}\right\}$. Tensor Space Let $V_{n}\left(V_{m}\right)$ be n-dimensional (m-dimensional) vector space. A mapping A : $\overline{V_{n} \rightarrow V_{m}}$ is a tensor if \mathbf{A} is linear. That is, $\forall \alpha, \beta \in \mathbb{R} \& \forall \mathbf{a}, \mathbf{b} \in V_{n}$,

$$
\begin{equation*}
\mathbf{A}(\alpha \mathbf{a}+\beta \mathbf{b})=\alpha \mathbf{A}(\mathbf{a})+\beta \mathbf{A}(\mathbf{b}) . \tag{1}
\end{equation*}
$$

Let $\operatorname{Lin}\left(V_{n}, V_{m}\right)$ be the collection of all linear mappings (i.e., tensors) with domain V_{n} and range V_{m}. For any $\alpha \in \mathbb{R}$ and any $\mathbf{A}_{1}, \mathbf{A}_{2} \in \operatorname{Lin}\left(V_{n}, V_{m}\right)$, define two operations

$$
\begin{aligned}
& \text { scalar product } \quad\left(\alpha \mathbf{A}_{1}\right)(\mathbf{a})=\alpha \mathbf{A}_{1}(\mathbf{a}) \quad \forall \mathbf{a} \in V_{n}, \\
& \text { vector addition } \quad\left(\mathbf{A}_{1}+\mathbf{A}_{2}\right)(\mathbf{a})=\mathbf{A}_{1}(\mathbf{a})+\mathbf{A}_{2}(\mathbf{a}) \quad \forall \mathbf{a} \in V_{n} .
\end{aligned}
$$

\checkmark Claim: For any $\alpha, \beta \in \mathbb{R}$ and any $\mathbf{A}_{1}, \mathbf{A}_{2} \in \operatorname{Lin}\left(V_{n}, V_{m}\right), \alpha \mathbf{A}_{1}+\beta \mathbf{A}_{2}$ is a linear mapping (from V_{n} to V_{m}).

The above claim implies that the set $\operatorname{Lin}\left(V_{n}, V_{m}\right)$ is also a vector space.
Inner Product We equip a n-dimensional vector space V_{n} with a mapping $V_{n} \times V_{n} \rightarrow \mathbb{R}$, called inner product such that for any $\alpha, \beta \in \mathbb{R}$ and any $\mathbf{a}, \mathbf{b}, \mathbf{c} \in V_{n}$, the inner product is

1. Positive-definite: $\mathbf{a} \cdot \mathbf{a} \geq 0 ; \mathbf{a} \cdot \mathbf{a}=0 \Longleftrightarrow \mathbf{a}=0$,
2. Linear: $\mathbf{a} \cdot(\alpha \mathbf{b}+\beta \mathbf{c})=\alpha \mathbf{a} \cdot \mathbf{b}+\beta \mathbf{a} \cdot \mathbf{c}$,
3. Symmetric: $\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}$.

Geometric interpretations:

- Length of a vector: $|\mathbf{a}|=\sqrt{\mathbf{a} \cdot \mathbf{a}}$,
- Angle between two vectors: $\cos (\theta)=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$.

Euclidean Space \mathbb{R}^{n} For a n-dimensional vector space V_{n} equipped with an inner product, we can find an orthonormal basis $\left\{\mathbf{e}_{i}: i=1, \cdots, n\right\}$ such that for all $i, j=1, \cdots, n$,

$$
\mathbf{e}_{i} \cdot \mathbf{e}_{j}=\delta_{i j}= \begin{cases}1 & \text { if } i=j, \\ 0 & \text { if } i \neq j,\end{cases}
$$

where $\delta_{i j}$ is called kronecker delta. With respect to this basis, for any vector $\mathbf{a} \in V_{n}$, we find its components (a_{1}, \cdots, a_{n}) (or coordinates if a is a point in space)

$$
\mathbf{a}=\sum_{i=1}^{n} a_{i} \mathbf{e}_{i}, \quad a_{i}=\mathbf{a} \cdot \mathbf{e}_{i} \in \mathbb{R} \quad \forall i=1, \cdots, n .
$$

We can further identify the space V_{n} with the familiar Euclidean space \mathbb{R}^{n}. However, one shall keep in mind, \mathbb{R}^{n}, as a vector space equipped with an inner product, is more than a collection of arrays of real numbers. One should not think of a vector in \mathbb{R}^{n} as an array of real numbers unless we specify a basis or a frame.
Tensor Product For vectors $\mathbf{a} \in \mathbb{R}^{n}$ and $\mathbf{b} \in \mathbb{R}^{m}$, the tensor product $\mathbf{b} \otimes \mathbf{a}$ is a linear mapping:

$$
\begin{aligned}
& \mathbf{b} \otimes \mathbf{a}: V_{n} \rightarrow V_{m} \\
& (\mathbf{b} \otimes \mathbf{a})(\mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b} \quad \forall \mathbf{c} \in \mathbb{R}^{n} .
\end{aligned}
$$

Claim: For any $\mathbf{a} \in \mathbb{R}^{n}$ and $\mathbf{b} \in \mathbb{R}^{m}$, the mapping $\mathbf{b} \otimes \mathbf{a}$ (from V_{n} to V_{m}) defined above is linear.

- Claim: Let $\left\{\mathbf{e}_{i}: i=1, \cdots n\right\}$ be an orthonormal basis of \mathbb{R}^{n} and $\left\{\hat{\mathbf{e}}_{p}: p=1, \cdots m\right\}$ be an orthonormal basis of \mathbb{R}^{m}. Show that

$$
\left\{\hat{\mathbf{e}}_{p} \otimes \mathbf{e}_{i}: i=1, \cdots, n, p=1, \cdots m\right\} \subset \operatorname{Lin}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)
$$

forms a basis of the linear space $\operatorname{Lin}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$.

Subspace of \mathbb{R}^{n}, Orthogonal Subspace A subset $M \subset \mathbb{R}^{n}$ is a subspace if $\forall \alpha, \beta \in \mathbb{R} \& \forall \mathbf{a}, \mathbf{b} \in$ \bar{M},

$$
\alpha \mathbf{a}+\beta \mathbf{b} \in M .
$$

Let $M^{\perp}=\{\mathbf{b}: \mathbf{b} \cdot \mathbf{a}=0 \forall \mathbf{a} \in M\}$.
Claim: Show that M^{\perp} is a subspace of \mathbb{R}^{n} if M is a subspace.
$\underline{\text { Projection Theorem }}$ Let M be a subspace of \mathbb{R}^{n}. For any $\mathbf{x} \in \mathbb{R}^{n}$, we have

$$
\mathbf{x}=\mathbf{y}+\mathbf{z} \text { where } \mathbf{y} \in M, \mathbf{z} \in M^{\perp} .
$$

The vector \mathbf{y}, \mathbf{z} are uniquely determined by \mathbf{x}.

- Proof:

Transpose of a Tensor $\operatorname{Let} \mathbf{A} \in \operatorname{Lin}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right),\left\{\mathbf{e}_{i}: i=1, \cdots n\right\}$ be an orthonormal basis of \mathbb{R}^{n} and $\left\{\hat{e}_{p}: p=1, \cdots m\right\}$ be an orthonormal basis of \mathbb{R}^{m}. Then \mathbf{A} admits the following decomposition

$$
\mathbf{A}=\sum_{p, i} A_{p i} \hat{\mathbf{e}}_{p} \otimes \mathbf{e}_{i} \quad \text { where } A_{p i}=\hat{\mathbf{e}}_{p} \cdot \mathbf{A}\left(\mathbf{e}_{i}\right) \forall i=1, \cdots, n, p=1, \cdots, m .
$$

Define

$$
\begin{aligned}
& \mathbf{A}^{T}: \mathbb{R}_{m} \rightarrow \mathbb{R}^{n}, \\
& \mathbf{A}^{T}=\sum_{p, i} A_{p i} \mathbf{e}_{i} \otimes \hat{\mathbf{e}}_{p} \in \operatorname{Lin}\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right) .
\end{aligned}
$$

- Claim: For any $\mathbf{a} \in \mathbb{R}^{n}$ and $\mathbf{b} \in \mathbb{R}^{m}$,

$$
\mathbf{b} \cdot \mathbf{A}(\mathbf{a})=\mathbf{a} \cdot \mathbf{A}^{T}(\mathbf{b})
$$

Symmetric and Skew-symmetric Tensor $\operatorname{Let} \mathbf{A} \in \operatorname{Lin}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$. A is symmetric if $\mathbf{A}=\mathbf{A}^{T}$; \mathbf{A} is skew-symmetric if $\mathbf{A}^{T}=-\mathbf{A}$.

Let $\left\{\mathbf{e}_{i}: i=1, \cdots n\right\},\left\{\hat{\mathbf{e}}_{p}: p=1, \cdots n\right\}$ be two orthonormal bases of \mathbb{R}^{n}. We have shown

$$
\mathbf{A}=\sum_{p, i} A_{p i} \hat{\mathbf{e}}_{p} \otimes \mathbf{e}_{i} \quad \text { where } A_{p i}=\hat{\mathbf{e}}_{p} \cdot \mathbf{A}\left(\mathbf{e}_{i}\right) \forall p, i=1, \cdots, n .
$$

- Claims :

1. For any $\mathbf{A} \in \operatorname{Lin}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$, we have a unique decomposition $\mathbf{A}=\mathbf{E}+\mathbf{W}$, where $\mathbf{E}=\mathbf{E}^{T}$ and $\mathbf{W}=-\mathbf{W}^{T}$.
2. $\mathbf{A}=\mathbf{A}^{T}$ if and only if for any $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}$,

$$
\mathbf{b} \cdot \mathbf{A}(\mathbf{a})=\mathbf{a} \cdot \mathbf{A}(\mathbf{b})
$$

3. If $\mathbf{A}=\mathbf{A}^{T}$ and $\mathbf{a} \cdot \mathbf{A}(\mathbf{a})=0$ for any $\mathbf{a} \in \mathbb{R}^{n}$, then $\mathbf{A}=0$.
4. There exists a nonzero tensor \mathbf{A} such that

$$
\mathbf{a} \cdot \mathbf{A} \mathbf{a}=0 \quad \forall \mathbf{a} \in \mathbb{R}^{n}, n \geq 2 .
$$

5. Assume that $\left(\hat{\mathbf{e}}_{1}, \cdots, \hat{\mathbf{e}}_{n}\right)=\left(\mathbf{e}_{1}, \cdots, \mathbf{e}_{n}\right)$. If $\mathbf{A}=\mathbf{A}^{T}$, then $A_{p i}=A_{i p}$ for all $p, i=1, \cdots, n$; if $\mathbf{A}=-\mathbf{A}^{T}$, then $A_{p i}=-A_{i p}$.
Product of tensors Let $\mathbf{A} \in \operatorname{Lin}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right), \mathbf{B} \in \operatorname{Lin}\left(R^{m}, \mathbb{R}^{k}\right)$. Then

$$
\begin{aligned}
\mathbf{B A}: \mathbb{R}^{n} & \rightarrow \mathbb{R}^{k}, \\
\mathbf{B A}(\mathbf{a}) & =\mathbf{B}(\mathbf{A}(\mathbf{a})) .
\end{aligned}
$$

$\underline{\text { Orthogonal Tensor }}$ Let $\mathbf{Q} \in \operatorname{Lin}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$. The tensor \mathbf{Q} is orthogonal if $\mathbf{Q a} \cdot \mathbf{Q b}=\mathbf{a} \cdot \mathbf{b}$ for all $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}$. From the definition we see that orthogonal tensor operating on vectors preserves the length of a vector and the angle between two vectors since

1. $|\mathbf{a}|=|\mathbf{Q a}|$, and
2. $\mathbf{a} \cdot \mathbf{b}=\mathbf{Q a} \cdot \mathbf{Q b}$.

Claim: A tensor $\mathbf{Q}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is orthogonal if and only if $\mathbf{Q}^{T} \mathbf{Q}=\mathbf{Q Q}^{T}=\mathbf{I}$, where \mathbf{I} is the identity mapping from \mathbb{R}^{n} to \mathbb{R}^{n}.

Trace and determinant of a tensor $\operatorname{Let} \mathbf{A} \in \operatorname{Lin}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ and $\left\{\mathbf{e}_{i}: i=1, \cdots, n\right\}$ be an orthonormal basis. Then we have $\mathbf{A}=\sum_{p, i} A_{p i} \mathbf{e}_{p} \otimes \mathbf{e}_{i}$ and refer to $\operatorname{Tr}(\mathbf{A})=\sum_{p=1}^{n} A_{p p}$ as the trace of $\mathbf{A}, \operatorname{det} A=\operatorname{det}\left[A_{p i}\right]$ as the determinant of \mathbf{A}.
\checkmark Claim Tr, det $: \operatorname{Lin}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right) \rightarrow \mathbb{R}$ is independent of the choice of basis.

Rigid Rotation Tensor An orthogonal tensor $\mathbf{R} \in \operatorname{Lin}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ is a rigid rotation if $\operatorname{det} \mathbf{R}=+1$. Representation theorem: For any $\mathbf{A} \in \operatorname{Lin}\left(\mathbb{R}^{n}, \mathbb{R}\right)$, there is an $\mathbf{a} \in \mathbb{R}^{n}$ such that Explicitly, if we have

$$
\mathbf{A}=\sum_{i} A_{1 i} \hat{\mathbf{e}}_{1} \otimes \mathbf{e}_{i}, \quad \hat{\mathbf{e}}_{1}=1,
$$

then

$$
\mathbf{a}=\sum_{i=1}^{n} A_{1 i} \mathbf{e}_{i} .
$$

Cross product in \mathbb{R}^{3} For $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{3}$,

$$
\mathbf{a} \wedge \mathbf{b}=\left|\begin{array}{lll}
\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\mathbf{W}(\mathbf{b})
$$

where $\mathbf{W}=\sum_{p, i} W_{p i} \mathbf{e}_{p} \otimes \mathbf{e}_{i}$,

$$
\left[W_{p, i}\right]=\left(\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right)
$$

- Claim: The following properties of cross products holds:

1. $\mathbf{b} \wedge \mathbf{a}=-\mathbf{a} \wedge \mathbf{b}, \quad \mathbf{a} \cdot(\mathbf{a} \wedge \mathbf{b})=0, \mathbf{b} \cdot(\mathbf{a} \wedge \mathbf{b})=0$.
2. $(\mathbf{a} \wedge \mathbf{b}) \cdot \mathbf{c}=(\mathbf{b} \wedge \mathbf{c}) \cdot \mathbf{a}=(\mathbf{c} \wedge \mathbf{a}) \cdot \mathbf{b}$.
3. Geometric interpretation: show that $|\mathbf{a} \wedge \mathbf{b}|=$ area of the parallelogram formed by \mathbf{a} and \mathbf{b}; $|\mathbf{c} \cdot(\mathbf{a} \wedge \mathbf{b})|=$ volume of the parallelepiped formed by $\mathbf{a}, \mathbf{b}, \mathbf{c}$.
