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Abstract

We present a simple design of electromagnetic shields for both field expelling and
field confinement. Motivated by the concept of neutral inclusions in the theory
of composites, we introduce two concepts of neutral shells and use neutral shells
to construct our designs of electromagnetic shields. We also discuss the relations
between electromagnetic shields and cloaking structures and argue that the designed
shields are capable of “cloaking” for plane waves in the long wavelength limit.

1. Introduction

Passive electromagnetic shields for field expelling or confinement are necessary for
the reliable working of many electronic devices. Examples of shields for field ex-
pelling include superconducting quantum interface devices (SQUIDs) for precision
measurements of magnetic fields [32]. Examples of shields for field confinement
include magnetic resonance imaging (MRI) machines and tokamaks in magnetic
confinement fusion [5, 37]. In addition to these examples, electromagnetic shields
are commonly used in advanced nanotechnology research facilities, biomedical re-
search laboratories, continuous beam accelerators, and various facilities such as
transformer vault and switchgear in electrical power industry [10, 27]. The use
of electromagnetic shields reduces the interference between devices and devices or
devices and environments.

For frequencies above 100KHz, satisfactory shielding performance can be easily
achieved by a conductive shell (Faraday shield), which uses the eddy current to ab-
sorb the electromagnetic waves [28]. For a low-frequency electromagnetic wave or
static electric or magnetic field, passive shields use, e.g., high-permeability materi-
als, to channel flux lines around the shielded region [4, 18, 19, 2]. There is, however,
a limitation in using a passive shield of a high-permeability material. Further, a
careful design of the shield can greatly improve the shielding performance without
using extra expensive high-permeability materials, as Mager has shown that a shield
of double shells of high-low-high permeability materials performs much better than
a single shell of the same material, weight and exterior boundary [19]. Since then,
various authors [9, 7, 36, 3, 29] have considered multiple cylindrical or spherical
shells and achieved a good understanding of such shielding structures.

We present a simple design of electromagnetic shields for both field expelling
and field confinement. This design is motivated by the concept of neutral inclu-
sions in the theory of composite, based on which we introduce two concepts of
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neutral shells. A second motivation arises from recent waves of theoretical propos-
als and experimental efforts to realize cloaking by manipulating various materials
[31, 16, 24, 25, 26]. Perfect cloaking, by definition, requires that the shield and the
objects we desire to hide do not disturb the wave field on the exterior domain for an
incident wave of any source. That is, the solution to the Maxwell equations remains
exactly the same on the exterior domain as if we set the permittivity ε(x) = ε0 and
permeability µ(x) = µ0 everywhere in space. This requirement is rather stringent
but, nevertheless, could be satisfied by using materials including singular mate-
rials — materials with their physical moduli equal to negative numbers, zero or
infinite, see e.g. [31, 16, 24, 35, 25, 26]. Though in theory but not without de-
bates [38, 14, 30], such singular materials may be realized by metamaterials [39].
Metamaterials, exhibiting singular properties by resonance, are intrinsically lossy
and strongly frequency-dependent. These issues can be addressed by considering
normal materials while relaxing the stringent requirements of perfect cloaking. The
resulting cloaks, however, must be interpreted with caution.

We propose a relaxed concept of cloaking which requires that (i) the shield and
what we desire to hide disturb negligibly the exterior wave field when a plane wave
passes them, and (ii) if there is a wave source inside the shield, the wave penetrates
negligibly the shield into the exterior domain. In the long wavelength limit, require-
ment (i) amounts to an electromagnetic shield that excludes electromagnetic fields
from the interior domain and does not disturb the exterior fields; requirement (ii)
amounts to an electromagnetic shield that confines electromagnetic fields inside the
interior domain. We find that some of the ideas in the theory of composites and the
design of electromagnetic shields are surprisingly useful for the design of cloaking
structures. In particular, we demonstrate that, in the long wavelength limit and for
plane waves, the designed electromagnetic shields are capable of “cloaking” in the
relaxed sense discussed above.

We remark that the idea behind our designs is different from those of [34, 33],
where the distribution of materials in radian direction is optimized in a brute-
force manner, though the final layout of materials appear similar, i.e., a sphere of
multiple shells. Further, we can generalize our designs to geometries other than
coated spheres. The idea is by regarding the requirements on a neutral shell as
overdetermined conditions. The method presented in [17] can be used to construct
neutral shells of various shapes.

The paper is organized as follows. In section 2 we formulate the design prob-
lems concerning electromagnetic shields for field expelling and field confinement. In
section 3 we introduce the concepts of neutral shells, discuss the methods of con-
structing neutral shells and present various examples of neutral shells. Using neutral
shells as building blocks we then proceed to the solutions of the design problems of
electromagnetic shields in section 4. In section 5 we show that the designed elec-
tromagnetic shields indeed have the cloaking effects in the long wavelength limit.
We conclude in section 6 providing an outlook. In the appendix we derive bounds
on the shielding factor of the first kind of neutral shells in terms of the threshold
exponents [22].
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2. Formulation of the design problems

Let D ⊂ Rn be the design region (n = 2 or 3), E be the exterior domain, Ω be the
region we aim to exclude or confine the fields, and µ(x) (ε(x)) be the permeability
(permittivity) of the medium which is equal to µ0 (ε0) on Ω∪E and µD(x) (εD(x))
on the design region D, see Fig. 1 (a) and (b). We consider the Maxwell equations.
At the long wavelength limit, the magnetic and electric fields are decoupled [12]
and the magnetic and electric fields can be expressed as E(x, t) = −∇ϕ(x) exp(ik ·
x− iωt) and H(x, t) = −∇ξ(x) exp(ik ·x− iωt), where ϕ(x) and ξ(x) are the static
electric and magnetic potentials satisfying

div[ε(x)∇ϕ] = 0 on Rn (2.1)

and

div[µ(x)∇ξ] = 0 on Rn, (2.2)

respectively. Since equation (2.1) behaves similarly as (2.2), below we focus on the
design of magnetic medium, i.e., µD(x) and assume ε(x) = ε0 everywhere.

Figure 1. (a) A shield for field expelling; (b) A shield for field confinement.

We consider two types of shields as illustrated in Fig. 1(a) and (b). In the first
scenario, a magnetic field is applied externally and we aim to minimize the field
inside the shield D, i.e., on Ω; in the second scenario, a magnetic field source is
placed inside Ω and we aim to minimize the field outside the shield D, i.e., on E.
We shall achieve either goal or both by designing the materials profiles µD(x). Since
natural materials have a finite range of permeability, we enforce the constraint

µD ∈ F := {µ : 0 < 1/K ≤ µ(x)/µ0 ≤ K < +∞ ∀x ∈ D}, (2.3)

where K > 1 is a design constraint.
Mathematically, the design problems are posed as follows. For the first scenario

of field expelling, we consider the min-max problem:

min
µD∈F

{max{|∇ξ(x)| : x ∈ D}}, (2.4)

where the magnetostatic potential ξ is determined by the boundary value problem
{

div[µ(x)∇ξ] = 0 on Rn,

−∇ξ(x) = h0 as |x| → +∞.
(2.5)
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Here, h0 ∈ Rn with |h0| = 1 is interpreted as the polarization of the incident wave
or simply the applied magnetic field in the static situation. For the second scenario
of field confinement, we consider the min-max problem:

min
µD∈F

{max{|∇ξ(x)| : x ∈ E}}, (2.6)

where the magnetostatic potential ξ is determined by the boundary value problem




div[µ(x)∇ξ] = 0 on Rn \ Ω,

−n · ∇ξ(x) = h0 · n, on ∂Ω,

−∇ξ(x) → 0, as |x| → +∞.

(2.7)

Here n is the unit normal on the interface ∂Ω, h0 ∈ Rn with |h0| = 1 is given. Note
that the differences between (2.4) and (2.6) lie on the shielded regions (Ω vs. E)
and the boundary value problems that determine the field ((2.5) vs. (2.7)).

3. Neutral Shells

Our solutions to the design problems (2.4) and (2.6) are motivated by the concept of
neutral inclusion [20]. In the theory of composites, an inclusion inside a homogenized
medium is neutral if it does not perturb the effective property of the medium. In the
context of a magnetic medium and in terms of the boundary value problem (2.5),
the inclusion D∪Ω sketched in Fig. 1(a) is a neutral inclusion if the solution to (2.5)
satisfies

−∇ξ = h0 on E ∀h0 ∈ Rn. (3.1)

That is, the exterior field is undisturbed at the presence of the inhomogeneous
structure D ∪ Ω. From (3.1), it is not hard to see that a composite medium with
any number and any size of such neutral inclusions distributed in a matrix of
permeability µ0 has its effective permeability equal to µ0. The existence of neutral
inclusions is well-known, in particular, they include the Hashin’s construction of
coated spheres [11] and Milton’s construction of coated ellipsoids [23].

Below we present two concepts of neutral shells which require the followings:

i) the interior medium is the same as the exterior medium, i.e., µ(x) = µ0 if
x ∈ Ω ∪ E,

ii) the solution to the boundary value problem (2.5) satisfies (3.1) and

−∇ξ = const. on Ω. (3.2)

We call such a structure D a neutral shell of the first kind, which has been
introduced by Milgrom and Shtrikman (1989) [21] for calculating the effective
properties of composites. Or,

iii) the solution to the boundary value problem (2.7) satisfies

er · ∇ξ = −b0(n− 1)(er · h0)
rn

on ∂Ω, (3.3)

where r = |x|, er = |x|/r, and b0 ∈ R is a constant. We call such a structure
D a neutral shell of the second kind. The physical meaning of (3.3) is that
the field on ∂Ω coincides exactly with a point dipole h0 at the the origin.
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Neutral shells and their applications in the design of electromagnetic shields 5

The motivation for the above definitions of neutral shells is that the solutions to
(2.5) and (2.7) are exceptionally easy for neutral shells, and neutral shells have the
property that a nested neutral shell remains to be a neutral shell, see discussions
in section 4.

Figure 2. (a) A double-layer neutral shell with radius R1, R2, R3 and permeability µ1, µ2.
The lines are the contours of the solution ξ to the boundary value problem (2.5). (b) The
radius R2 versus µ̂ such that the structure D = D1 ∪D2 is a neutral shell: the solid line
“—” corresponds to neutral shells of the first kind; the dashed line “– –” corresponds to
neutral shells of the second kind. (c) The shielding factors s1

f and s2
f versus µ̂ of the neutral

shells. Note that the two curves s1
f = s1

f (µ̂) and s2
f = s2

f (µ̂) have no noticeable difference.

(a) Neutral shells of double layers

We now give various examples of neutral shells. In the simplest situation, we
consider domains of spherical symmetry. Dividing our design region D into double
spherical shells with radius R1, R2 and R3 as sketched in Fig. 2(a), we denote by
χV the characteristic function of the domain V , i.e., χV is equal to one on V and
zero otherwise. Then the permeability on the entire space is given by

µ(x) =
3∑

i=0

µiχDi
(x), (3.4)

where µ3 = µ0 and

D0 = Ω, Di = {x : Ri < |x| < Ri+1} (i = 1, 2), D3 = E.

Below we show that for appropriate µ1, µ2, R1, R2 and R3, the double shell D =
D1 ∪D2 is a neutral shell of the first or the second kind.

By symmetry, we write the solutions to (2.5) or (2.7) as

ξ = −h0 · ∇u, i.e., ∇ξ = −(∇∇u)h0, (3.5)
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where u is given by (r = |x|)

u(r) =

{
1
2air

2 + bi

r + ci if n = 3
1
2air

2 − bi log(r) + ci if n = 2
for x ∈ Di, i = 0, 1, 2, 3, (3.6)

and the constants ai, bi ∈ R are to be determined. We require that u′(r) be contin-
uous for r > 0, which implies that for i = 1, 2, 3,

ai−1Ri − bi−1

Rn−1
i

= aiRi − bi

Rn−1
i

. (3.7)

By direct calculations we find that

∆u = ∇ · ∇u = −σnb0δ(r) + n
3∑

i=0

aiχDi
, (3.8)

where δ(r) is the Dirac function, σn = 2π if n = 2 and = 4π if n = 3. Further, we
verify that the function vh0 = −h0 · ∇u satisfies

{
∆vh0 = 0 on Di \ {0}, i = 0, 1, · · · , 3,

∇vh0(x) → −a3h0 as |x| → ∞.
(3.9)

By (3.6) we have

∇vh0 = −(∇∇u)(h0) = −[aih0 − bi

rn
h0 +

nbier · h0

rn
er] on Di, i = 0, · · · , 3,

which implies that, for any x ∈ Si := {x : |x| = Ri} and i = 1, 2, 3,

er · [µi∇vh0(x+)− µi−1∇vh0(x−)] = er · h0

[
− µiai − µi(n− 1)bi

Rn
i

+µi−1ai−1 +
µi−1(n− 1)bi−1

Rn
i

]
. (3.10)

Here er = x/|x| and x+ (x−) denotes the boundary points outside (inside) the
sphere Si. Moreover, we write equation (2.2) in a different form as

{
∆ξ = 0 on Di, i = 1, · · · , 3,

er · [µi∇ξ(x+)− µi−1∇ξ(x−)] = 0 on Si, i = 2, 3.
(3.11)

Comparing (3.11) with (3.9)-(3.10), we are motivated to require that for any i =
1, 2, 3,

µiai +
µi(n− 1)bi

Rn
i

= µi−1ai−1 +
µi−1(n− 1)bi−1

Rn
i

, (3.12)

which, together with (3.7), can be rewritten as

[
ai

bi

]
= Mi

[
ai−1

bi−1

]
, Mi =

1
nµi

[
µi−1 + (n− 1)µi

(n−1)(µi−1−µi)
Rn

i

(µi−1 − µi)Rn
i µi + (n− 1)µi−1

]
. (3.13)
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Note that det(Mi) = µi−1/µi 6= 0. It will be useful to define a matrix

T = M3M2M1, det(T) = 1. (3.14)

By (3.13) we immediately have
[
a3

b3

]
= T

[
a0

b0

]
, T =

[
T11 T12

T21 T22

]
. (3.15)

We call the matrix T the transfer matrix. The boundary value problems (2.5)
and (2.7) can be conveniently solved using this transfer matrix T. To see this, let us
first consider (2.5), where the boundary conditions require that∇ξ(r) is nonsingular
at r = 0 and approaches to −h0 as r → +∞. These are satisfied by (3.5) if

b0 = 0, a3 = 1. (3.16)

Meanwhile, the boundary conditions in (2.7) are satisfied by (3.5) if

a0 +
(n− 1)b0

Rn
1

= 1, a3 = 0. (3.17)

Therefore, by (3.15) and (3.16) or (3.17), we can solve for all ai, bi for i = 0, · · · , 3
and obtain the solution to (2.5) or (2.7), as given by (3.5).

By (3.15) and (3.16), we see that if the matrix element T21 = 0, then b3 = 0,
i.e., the solution to (2.5) satisfies (3.1). The converse is also true. Further, from
(3.5), (3.6) and (3.16), we see that the solution to (2.5) automatically satisfies
(3.2). Therefore, a double spherical shell is a neutral shell of the first kind if and
only if the matrix element T21 = 0. Moreover, by the divergence theorem and (3.8)
we find that T21 = b3 = 0 if

0 =
∫

{r=R3}
er · ∇[u(r)− 1

2
a3r

2] =
∫

{r≤R3}
∆(u(r)− 1

2
a3r

2) =
2∑

i=0

(ai − a3)|Di|,

where |Di| denotes the volume of the domain Di. We define the shielding factor

s1
f =

|h0|
|∇ξ(0)| =

|a3|
|a0| = |T11|, (3.18)

which measures the effectiveness of the shield for field expelling.
Parallel to our discussions about the neutral shell of the first kind, we see that

if the matrix element T12 = 0, then, by (3.15) and (3.17), a0 = 0, i.e., the solution
to (2.7) satisfies (3.3). The converse is also true. Therefore, a double spherical shell
is a neutral shell of the second kind if and only if the matrix element T12 = 0.
Moreover, by the divergence theorem and (3.8) we find that T12 = a0 = 0 if

−σnb3 =
∫

{r=R3}
er · ∇u(r) =

∫

{r≤R3}
∆u(r) = a2|D2|+ a1|D1| − σnb0.

We define the shielding factor

s2
f =

|b0|
|b3| =

1
|T22| , (3.19)
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which measures the effectiveness of the shield for field confinement.
In Fig. 2 we show examples of neutral shells in three dimensions (n = 3) and

their shielding effects, where we specify

µ0 = 1, R1 = 1, R3 = 1.01 (3.20)

and assume µ2 = 1/µ1 = µ̂ so that the transfer matrix T depends only on µ̂ and R2:
T = T(µ̂, R2). Note that the thickness of the structure D is only 1% of the radius.
For given µ̂, we solve for R2(µ̂) (R′2(µ̂)) such that T21(µ̂, R2) = 0 (T12(µ̂, R2) = 0),
and find the corresponding shielding factor s1

f = |T11| (s2
f = 1/|T22|). In Fig. 2(b)

we show the curves R2 = R2(µ̂) and R2 = R′2(µ̂): the solid line “—” of R2 = R2(µ̂)
corresponds to neutral shells of the first kind; the dashed line “– –” of R2 = R′2(µ̂)
corresponds to neutral shells of the second kind. In Fig. 2(c) we show the curves of
the shielding factors s1

f = s1
f (µ̂) and s2

f = s2
f (µ̂) of the neutral shells. Note that the

two shielding factors s1
f and s2

f have no noticeable difference within the numerical
resolution. Further, it is interesting to notice that when R2 = 1.0050 and µ̂ = 99.0,
the structure D is simultaneously a neutral shell of the first kind and of the second
kind. In this case, the transfer matrix defined in (3.15) is a diagonal matrix

T =
[
s1

f 0
0 1/s2

f

]
, s1

f = s2
f = 1.95. (3.21)

(b) Neutral shells of continuous gradings

We now generalize our constructions of neutral shells to allow continuous grad-
ings. As in the last section, we assume Ω = {x : |x| < R1}, E = {x : |x| > R3},
and µ = µ(r) is continuous for r ∈ (R1, R3). Plugging (3.5) into (2.2), we find that

(∇∇u)∇µ + µ∇∆u = 0, i.e., u′′µ′ + µ(u′′ +
n− 1

r
u′)′ = 0. (3.22)

Note that µ(r) may be discontinuous across r = R1 and r = R3. In this case, equa-
tion (2.2) shall be interpreted as [[µ(r)∇ξ]]·er = 0. Therefore, across a discontinuous
interface of µ(r) at r = R, we have

[[µ(r)∇∇u]]er = 0, i.e., µ(R−)u′′(R−) = µ(R+)u′′(R+), (3.23)

where R = R1 or R3. Further, we require that u(r) is continuously differentiable
(C1) for r > 0 and u′(r) satisfies that

u′(r) =

{
a0r − b0

rn−1 if r ≤ R1,

a3r − b3
rn−1 if r > R3.

(3.24)

It is interesting to notice that equations (3.22)-(3.24) may be solved from two
directions. In one direction, we extend u(r) by interpolation such that u′(r) is at
least continuous for all r > 0. For example, let us assume

u′(r) =
3∑

k=0

αkrk. (3.25)
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Requiring u′ and u′′ are continuous at r = R1 and R3, we obtain
{

u′(R1) = a0R1 − b0
Rn−1

1
, u′(R3) = a3R3 − b3

Rn−1
3

,

u′′(R1) = a0 + (n−1)b0
Rn

1
, u′′(R3) = a3 + (n−1)b3

Rn
1

.
(3.26)

Further, equation (3.23) implies

µ(R1) = µ(R3) = µ0. (3.27)

Plugging (3.25) into (3.22), we obtain a first-order ordinary differential equation
(ODE) for µ(r). Specifying µ0, R1, R3 as in (3.20), we are left with nine unknowns:
a0, b0, a3, b3, α0, · · · , α3, and an integration constants associated with the solution
of the first-order ODE for µ in (3.22). There are six equations in (3.26)-(3.27).
Therefore, presumably we can specify three of the unknowns, e.g., (a0, b0) and α0,
and solve for all others. In particular, analogous to (3.15), we can write the relation
between (a0, b0) and (a3, b3) as

[
a3

b3

]
= T

[
a0

b0

]
, T =

[
T11 T12

T21 T22

]
. (3.28)

where the linear dependence of (a3, b3) on (a0, b0) follows from the ODE (3.22) is
linear for u(r). By adjusting the parameter α0, we could make the matrix element
T21 (T12) vanish and obtain a neutral shell of the first (second) kind.

In the opposite direction, we specify the functional dependence of µ on r and
determine the associated parameters so that the solution to (3.22) and (3.23) can
be indeed extended continuously differentiable to satisfy (3.24). In Fig. 2 we show
such examples where µ(r) is a piecewise constant function. Below we assume µ(r)
is linearly graded as

µ(r)/µ0 = µ̃(r −R2) + 1 if r ∈ (R1, R3), (3.29)

where µ̃ ∈ R is the gradient of µ(r) in the er-direction. Then equations (3.22),
(3.23) and (3.24) imply





[µ̃(r −R2) + 1](u′′ + (n− 1)u′
r )′ + µ̃u′′ = 0, if R1 < r < R3,

u′(R1) = a0R1 − b0
Rn−1

1
, µ(R1)

µ0
u′′(R1) = a0 + (n−1)b0

Rn
1

,

u′(R3) = a0R3 − b0
Rn−1

3
, µ(R3)

µ0
u′′(R3) = a3 + (n−1)b3

Rn
3

.

(3.30)

An analytical solution to the above problem is desirable but not obvious; we turn
to numerical solutions. Specifying µ0, R1, R3 as in (3.20), we are left with eight
unknowns: a0, b0, a3, b3, R2, µ̃, and two integration constants associated with the
solution to the second-order ODE for u′ in (3.30). Note that there are four boundary
conditions in (3.30). Therefore, if four of the unknowns, e.g., (a0, b0) and (µ̃, R2)
are specified, we can solve for all others. In particular, analogous to (3.15), we can
write the relation between (a0, b0) and (a3, b3) as

[
a3

b3

]
= T(µ̃, R2)

[
a0

b0

]
, T =

[
T11 T12

T21 T22

]
. (3.31)
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Figure 3. (a) The parameter R2 versus µ̃ such that the linearly graded structure
D = {x : R1 < |x| < R3} with permeability given by (3.29) is a neutral shell: the
solid line “—” of R2 = R2(µ̃) corresponds to neutral shells of the first kind; the dashed
line “– –” of R2 = R′2(µ̃) corresponds to neutral shells of the second kind. (b) The shield-
ing factors s1

f and s2
f versus µ̃ of the neutral shells. Note that the two curves s1

f = s1
f (µ̃)

and s2
f = s2

f (µ̃) are slightly different.

where the linear dependence of (a3, b3) on (a0, b0) follows from the ODE (3.22)
is linear for u(r). By adjusting the parameter (µ̃, R2), we could make the matrix
element T21 (T12) vanish and obtain a neutral shell of the first (second) kind.

In Fig. 3 we show examples of linearly graded neutral shells and their shielding
factors, where µ0, R1, R3 are specified by (3.20), and so if µ̃ and R2 are given,
we can calculate the transfer matrix T(µ̃, R2) by (3.30). For given µ̃, we solve for
R2 = R2(µ̃) (R2 = R′2(µ̃)) such that T21(µ̃, R2) = 0 (T12(µ̃, R2) = 0), and find
the corresponding shielding factor s1

f = |T11| (s2
f = 1/|T22|). Figure 3(a) shows the

curves R2 = R2(µ̃) and R2 = R′2(µ̃): the solid line “—” of R2 = R2(µ̃) corresponds
to neutral shells of the first kind; the dashed line “– –” of R2 = R′2(µ̃) corresponds
to neutral shells of the second kind. Figure 3(b) shows the curves of the shielding
factors s1

f = s1
f (µ̃) and s2

f = s2
f (µ̃) of the neutral shells. Note that the two shielding

factors s1
f and s2

f are slightly different.

4. Designs of electromagnetic shields

In this section, based on the concepts of neutral shells we construct solutions to
the design problems (2.4) and (2.6). First, we verify that the solutions to (2.5) and
(2.7) have the transformation property that

µ(x) → µ′(x) = µ(λx) ⇒ ξ(x) → ξ′(x) = ξ(λx)/λ ∀ λ > 0.

Since ∇ξ′x(x) = ∇xξ(λx), we infer that a uniformly shrunk neutral shell remains
to be a neutral shell and the shielding factor remains unchanged. Therefore, if we
construct a structure by shrinking and nesting N -neutral shells as illustrated in
Fig. 4, the transfer matrix of the overall structure, denoted by TN , is given by

TN = TN , (4.1)

where T is the transfer matrix of the prototype neutral shell. Since products of
lower (upper) triangular matrices remain to be lower (upper) triangular matrix, the
overall structure is again a neutral shell of the first (second) kind if the prototype
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Figure 4. A shield of N -nested neutral shells.

shell is a neutral shell of the first (second) kind. The key observation is that the
shielding factor of the overall structure grows exponentially whereas the growth of
the thickness of the shield decreases exponentially as the nesting number increases.
For example, let us begin with a double-layer neutral shell specified by (3.4) and
illustrated in Fig. 2(a). If µ̂ = 200 and R2 = 1.0064, the double-layer shell is a
neutral shell of the first kind with shielding factor s1

f = 3.48, as shown in Fig. 2 (b)
and (c). Upon shrinking this prototype neutral shell and nesting N such neutral
shells, the permeability on the entire space is given by

µ(x) =





µ0 if r > R3

µ̂ if R2(R1
R3

)k < r < R3(R1
R3

)k, k = 0, · · · , N − 1,

1/µ̂ if R1(R1
R3

)k < r < R2(R1
R3

)k, k = 0, · · · , N − 1,

µ0 if r < R0 = R3(R1
R3

)N .

(4.2)

Note that the thickness H and shielding factor S1
f of the overall structure is given

by

H = R3(1− (R1/R3)N ), S1
f = (s1

f )N . (4.3)

Thus, if N = 20, then H = 0.18, the interior radius R0 = R3−H = 0.83, and S1
f =

6.79 × 1010. For this structure, the solution to the boundary value problem (2.5)
has the property that the strength of the field inside the structure is S1

f times
smaller than the external field. On the other hand, if R2 = 1.0036, the prototype
double-layer shell is a neutral shell of the second kind with shielding factor s2

f = s1
f ,

see Fig. 2 (b) and (c). Then for the structure of 20 such nested neutral shells, the
solution to the boundary value problem (2.7) has the property that the strength of
the field outside the structure is S2

f = 6.79 × 1010 times smaller than the interior
field.

There are applications that requires simultaneously expelling the external field
and confining the interior field. In these applications we can use neutral shells that
are both the first and second kind, e.g., the double-layer shell with µ̂ = 99 and
R2 = 1.0050, see Fig. 2 (b) and (c) and discussions in section 3(a). Then the
structure of 20 such nested neutral shells is a neutral shell of both the first and
second kind with both shielding factors Sf = S2

f = S1
f = 6.32 × 105, see (3.21).
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Figure 5. Cloaking effect of a shield of nested neutral shells.

Therefore, for this structure, the solution to the boundary problem (2.5) ((2.7)) has
the property that the strength of the field inside (outside) the structure is 6.32×105

times smaller than the external (interior) field.

5. Cloaking effect

In this section we verify that the constructed electromagnetic shields have the
following cloaking effects at the long wave length limit: (i) when a plane wave
passes the shield, the scattered wave field is negligible compared with the scattered
wave field at the absence of the shield, and (ii) an magnetic dipole inside the shield
gives rise to a negligible radiation field compared with the radiation field at the
absence of the shield.

To verify (i), we consider an incident plane wave h0 exp(i(x · k − ωt)) passes
the shield, and for simplicity, assume the permittivity ε(x) = ε0 everywhere but
the permeability is given by (4.2) with N = 20, µ̂ = 99 and R2 = 1.0050, i.e., the
prototype shell is simultaneously a neutral shell of the first and second kinds with
its transfer matrix given by (3.21).

If the wave length (λ) of the incident wave in free space is much larger than the
diameter (R3) of the shield, then besides a harmonic factor exp(i(x · k − ωt)) the
scattered wave field on the exterior domain E is given by hsc = −∇ξ−h0, where ξ
is the solution to (2.5). Since the shield is a neutral shell of the first kind, by (3.1)
we see that hsc = 0 on E, i.e., the shield does not disturb the incident wave on the
exterior domain. Moreover, let us hide a spherical particle inside the shield, and
for simplicity, assume the particle has permittivity ε0, permeability µ∗, and radius
R∗ < R0, see Fig. 5. For the particle and the shield, the solution to (2.5) is given
by (3.5) with

u(r) =





1
2a∗r2 + b∗

r if r < R∗,
1
2a0r

2 + b0
r if R∗ < r < R0,

1
2a3r

2 + b3
r if r > R3,

(5.1)

where, by discussions in section a and (4.1), we have
[
a3

b3

]
= TN

[
a0

b0

]
.
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Further, by (3.13), we have (n = 3)
[
a0

b0

]
= M∗

[
a∗
b∗

]
, M∗ =

1
nµ0

[
µ∗ + (n− 1)µ0

(n−1)(µ∗−µ0)
Rn∗

(µ∗ − µ0)Rn
∗ µ0 + (n− 1)µ∗

]
. (5.2)

Since the prototype shell is neutral with transfer matrix given by (3.21), and the
boundary condition in (2.5) and the nonsingularity at r = 0 imply a3 = 1 and
b∗ = 0, we obtain

hsc = b3∇[h0 · ∇1
r
], b3 =

(µ∗ − µ0)Rn
∗

1.9540(µ∗ + (n− 1)µ0)
. (5.3)

At the absence of the shield, the scattered wave field is given by

h′sc = b′3∇[h0 · ∇1
r
], b′3 =

(µ∗ − µ0)Rn
∗

(µ∗ + (n− 1)µ0)
. (5.4)

Comparing (5.3) with (5.4), we see that the scattered wave field at the presence of
the shield is 1.9540 = 3.99× 1011 times smaller than at the scattered wave field at
the absence of the shield.

To verify (ii), we assume there is a magnetic dipole mi at the origin. At the
presence of the shield, the radiation field is determined by

{
div[−µ(x)∇ξi + miδ(0)] = 0 on R3,

ξ(x) → 0 as |x| → +∞.
(5.5)

Again, assuming the solution to the above problem is given by (3.5) and (5.1) we
verify that

−∇ξi(x) = − 1
1.9520(4π)

{∇[mi · ∇1
r
]} ∀x ∈ E.

At the absence of the shield, the radiation field is directly given by − 1
(4π){∇[mi ·

∇ 1
r ]}, which is 1.9520 = 6.32× 105 times larger than the wave field at the presence

of the shield.
From the energetic viewpoint, the shield of nested neutral shells essentially cuts

off the magnetic interactions between bodies inside the shield and outside the shield.
To see this, in addition to the magnetic dipole mi inside the shield, we assume there
is a second magnetic dipoles me at an exterior point xe, see Fig. 4. At the absence
of the shielding structure, the interaction energy between the two dipoles are given
by

E ′int =
3(mi · x̂e)(me · x̂e)−me ·mi

4π|xe|3 ,

where x̂e = xe/|xe|, see [12]. The interaction energy between the two dipoles at the
presence of the shield is given by

Eint = −me · ∇ξi(xe) =
1

1.9520
E ′int,

which is 1.9520 = 6.32×105 times smaller than the interaction energy at the absence
of the shield.
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6. Summary and Discussion

We consider the design of passive electromagnetic shields in the long wavelength
limit. By introducing the concepts of neutral shells, we construct our shields simply
by shrinking and nesting a number of a prototype neutral shells. The key observa-
tion is that the resulting shield remains as a neutral shell and the shielding factor
increases exponentially as the number of nesting increases. We also show that the
designed shield is capable of cloaking in a relaxed sense discussed in the introduc-
tion.

The method of solving the governing boundary value problems (2.5) and (2.7)
follows from the observation that the potential of the boundary value problems (2.5)
and (2.7) is in fact given by a gradient field, see (3.5). This observation greatly
simplifies the procedure of solving the boundary value problems (2.5) and (2.7) and
facilitates the definition of transfer matrix, see (3.15). Further, we note that this is
a special property of the structure, i.e., multiple spherical shells, but not restricted
to structures with spherical symmetries. It can be shown that multiple ellipsoidal
shells have a similar property and so neutral shells of confocal ellipsoidal surfaces
can be defined as well. More generally, we can construct neutral shells of a variety
of geometries by regarding the requirements on neutral shells as overdetermined
conditions. A generalization of the work [17] yields a method of constructing neutral
shells of other shapes.

Two remarks are in order regarding the realizable range of the shielding fac-
tors and the relative permeability of materials. Though in Fig. 2(c) and 3(b) it
appears that the shielding factors are greater or equal to one, there are situa-
tions where the shielding factors are less than one. Further, for given design con-
straint (2.3), the shielding factors may be bounded from above and below in terms
of K. These bounds are closely related with the threshold exponents defined by
Milton (1986) [22], see details in the appendix. Further, high-permeability mate-
rials, e.g, Mu-metals, are easily available with relative permeability µ/µ0 up to
2.0× 104 [13]. Most natural diamagnetic materials such as water and bismuth have
relative permeability at the order of 0.99999, but superconductors ideally have rel-
ative permeability equal to zero. Therefore, materials with relative permeability
between 0.005 and 200 are physically realizable, at least by composite materials
with a superconductor phase.

As discussed in this paper, the design of cloaking structures is closely related
with the design of electromagnetic shields in the long wavelength limit. It will be
interesting to generalize the concepts of neutral shells and the current designs of
electromagnetic shields and cloaking structures to waves with finite wavelengths.
The interested reader is referred to [6, 1] for works in this direction.

Appendix: Bounds on the shielding factors

Milton (1986) [22] defined the threshold exponents to measure the degree of field
concentration in a composite. Below we show that the threshold exponents imply
bounds on the shielding factors of neutral shells. To see this, we recall the following
definition of the threshold exponents, also see [15, 8]. Let U ⊂ Rn be an open
bounded domain and ξ ∈ W 1,2(U) be a weak solution to

div[µ(x)∇ξ] = 0 a.e. on U,
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where µ(x) satisfies

0 < 1/K ≤ µ(x)/µ0 ≤ K < +∞ for a.e. x ∈ U, (A.1)

It is known that |∇ξ| is in Lp(U) for some p > 2 and the reciprocal 1/|∇ξ| is in
Lq(U) for some q ≥ 0, i.e.,

∫

U

|∇ξ|p < +∞ and
∫

U

1
|∇ξ|q < +∞. (A.2)

The supremum of such p (q) that the first (second) inequality holds for any µ(x)
satisfying (A.1), denoted by pM (qM ), is called the threshold exponents.

Let D = {x : R1 < |x| < R3} be a spherical neutral shell of the first kind
with shielding factor s1

f , µ(x) restricted on D satisfies (A.1), and ξ1 be the solution
to (2.4). Consider a shield of N -nested neutral shells of the scaled copies of D, for
which the solution to (2.4) is denoted by ξN . Let Vi = {x : R3(R1

R3
)i < |x| < R3}

and V∞ = {x : |x| < R3} and, without loss of generality, assume V∞ ⊂ U . Then
from the discussions in section 4, we have that for any i ≥ 1,





∇ξi+1(x) = ∇ξi(x) if x ∈ Vi,

∇ξi+1(x) = 1
s1

f
∇ξi(R3

R1
x) if x ∈ Vi+1 \ Vi,

∇ξi+1(x) = 1
s1

f
∇ξi(R3

R1
x) if x ∈ V∞ \ Vi+1.

Thus,
∫

U

|∇ξN |p ≥
∫

VN

|∇ξN |p = (1 + % + · · ·+ %N−1)
∫

V1

|∇ξ1|p,
∫

U

1
|∇ξN |q ≥

∫

VN

1
|∇ξN |q = (1 + %′ + · · ·+ %′N−1)

∫

V1

1
|∇ξ1|q ,

where %(p) := (R1
R3

)n(s1
f )−p and %′(q) := (R1

R3
)n(s1

f )q. Sending N → +∞, by the
definition of pM and qM we infer that %(pM ) ≤ 1 and %′(qM ) ≤ 1, which implies

(R1

R3

)n/pM ≤ s1
f ≤

(R1

R3

)−n/qM

. (A.3)

In two dimensions (n = 2), pM = 2K
K−1 and hence the above inequality implies a

lower bound on the shielding factor

s1
f ≥

(R1

R3

)(K−1)/K

.

On the other hand, if a neutral shell of the first kind with s1
f could be constructed,

by (A.3) we obtain the following nontrivial upper bound for the threshold exponents




pM ≤ n log
R1
R3

log s1
f

if s1
f < 1,

qM ≤ n log
R3
R1

log s1
f

if s1
f > 1.

(A.4)

Acknowledgements This work is supported by the startup funds of the Univer-
sity of Houston. The author thanks Professor Graeme Milton for pointing out the
connection between the shield factors and the threshold exponents, which motivates
the calculations in the appendix, and the references [6, 21, 15, 8, 1].

Article submitted to Royal Society



16 L.P. Liu

References
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