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Abstract

This paper is devoted to the study of geometries of inhomogeneities with minimum strain or
stress concentration. The solutions are achieved by the indirect method of first deriving lower
bounds and then constructing the geometries to attain the lower bounds. In particular, we
show that a new class of geometries, namely, E-inclusions and periodic E-inclusions, are the
optimal geometries with minimum field concentrations. We also obtain the explicit relation
between the shape matrix of E-inclusion and remote applied strain which will be convenient
for engineering applications of these new geometries.
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1. Introduction

The failure criteria of materials are often formulated in terms of “yield stress” or “ultimate
stress”, meaning that the maximum stress sustained by the material cannot exceed these
critical values. As is well-known, inhomogeneities such as holes or inclusions inevitably
increase the local stress and strain in an elastic body (Wheeler and Kunin, 1986; Mura, 1987;
Cherkaev et al., 1998; Nemat-Nasser and Hori, 1999; Vigdergauz, 2006). On the other hand,
it is necessary to introduce inhomogeneities such as holes for adaptivity or desired geometry.
For instance, it is common to use rivets or bolts to assemble small structural members into
large, sometimes gigantic, structures such as airplanes, buildings and bridges. Also, second-
phase precipitates often emerge for the coexistence of different phases of the same materials
whose microstructure may be engineered to improve mechanical properties of the material
(Schneider et al., 1997; Jou et al., 1997). In microelectronics, a similar dilemma occurs. To
miniaturize microelectronic devices, it is desirable to use smaller conducting interconnects for
realizing desired functionality. However, nuclei migrates under the bombardment of electric
currents or flow of electrons and under certain critical currents or the driving force on the
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electrons (i.e., electric field), the migrations of nuclei become so severe that the material fails
permanently (Christou, 1994).

From the above examples, it is clear that for practical engineering one needs to balance
between lowering the magnitude of local fields such as stress, strain or electric field and
maintaining the functionality or fulfilling the geometric constraints among others. There-
fore, a precise analysis of field concentration is critical for the safety and reliability of the
overall structure. In order to maintain the fields within safe limits, we are interested in the
optimization problems of minimizing field concentration with respect to the geometries of
inhomogeneities. A dimensionless quantity, namely, the field concentration factor, may be
introduced to evaluate the severity of local field concentration in the body. Then a gener-
ic design problem is to find the optimal geometries of inhomogeneities such that the field
concentration factor is minimized.

From a mathematical viewpoint, the dependence of field concentration on the geometries
of inhomogeneities is rather complicated; one has to a priori solve the governing partial dif-
ferential equation to evaluate the concentration factor for given geometries. In other words,
the concentration factor depends nonlocally on the geometries of inhomogeneities. There-
fore, the prevailing direct method of calculus of variation is not applicable. A conventional
approach to such optimal design problems is based on an iterative process: trial geometries
of inhomogeneities are chosen, the field concentration is evaluated upon a full solution of
the underlying boundary value problem, and then a change of geometries is proposed to
lower the field concentration via a sensitivity analysis (Haftka and Grandhi, 1986; Allaire
and Jouve, 2008). This process is iterated until a local minimum of field concentration is
achieved. This approach is computationally intensive and the final result, though could be
satisfactory for a target application, cannot give a definitive answer to the global minimum.
For the global minimum, one has to use the indirect method of first finding a lower bound
on the concentration factor and then construct geometries to attain the lower bound.

In the context of linear elasticity, the problem of minimum stress or strain concentration
has been discussed and reviewed by Sternberg (1958) and Wheeler (1992). Recently, there
has been significant progress on a general theory concerning minimum field concentration for
general measures of local fields that include the local Von Mises stress and strain (Alali and
Lipton, 2009), hydrostatic stress and strain (Lipton, 2005; 2006), and local mixed modes
of stress and strain (Alali and Lipton, 2012). The theory has also been established in
much broader physical contexts including thermo-elastic composites (Chen and Lipton, 2010)
and conductive composites (Lipton, 2003; 2004). The existing results concerning optimal
geometries clearly suggest that the uniformity of field in the inhomogeneities is intimately
related with the optimality of the geometries for minimum field concentration. Also, the
optimal microstructures such as coated ellipsoids that achieve minimum field concentration,
under suitable algebraic assumptions about the material properties, turn out to be optimal
microstructures attaining the Hashin-Shtrikman’s bounds of the effective properties of two-
phase composites. As shown in recent works of Liu et al. (2007; accepted), a new class of
geometries, namely, E-inclusions and periodic E-inclusions,1 have similar uniformity property
as ellipsoids and achieve the Hashin-Shtrikman bounds for composites. One may wonder if

1E-inclusions or periodic E-inclusions in two dimensions are first constructed by Vigdergauz (1976, 1986).
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they are also the optimal geometries that minimize the field concentrations. Our main goal
here is to report that the answer to the above question is affirmative. We also find explicitly
the relationship between the average applied strain E and the shape matrix Q of the E-
inclusions with minimum strain or stress concentration (cf., (40)). Since the shape matrices
of E-inclusions have to be positive semi-definite, E-inclusions being the solutions requires
that the average applied strain has to satisfy some algebraic conditions. Beyond this region,
the reader is referred to Cherkaev et al. (1998) and Vigdergauz (2006; 2008) for approximate
solutions and important insight.

The paper is organized as follows. In Section 2 we formulate and state the mathematical
optimization problem in the context of linear elasticity. The formulation allows for simul-
taneous consideration of finite many inhomogeneities and periodic array of inhomogeneities
and in both two and three dimensions. The lower bounds for stress and strain concentra-
tion factors are derived in Section 3. In Section 4 we show that E-inclusions indeed achieve
the lower bounds of minimum stress or strain concentration. We conclude and provide an
outlook of potential engineering applications in Section 5.

Notation. Since stress and strain are symmetric tensor fields, we introduce the following
lp-norm of a symmetric matrix M ∈ Rn×n

sym for p ∈ [1,∞]:

‖M‖lp := (
n∑
i=1

|λi(M)|p)1/p, (1)

where λ1(M) ≤ · · · ≤ λn(M) are the ordered eigenvalues of the symmetric M. We remark
that ‖M‖lp = (M ·M)1/2 is the usual Euclidean norm for p = 2, ‖M‖lp =

∑n
i=1 |λi(M)| if

p = 1, and ‖M‖lp = max{|λi(M)| : i = 1, · · · , N} if p =∞.

2. Problem statement

Consider an infinite homogeneous elastic body occupying the entire Euclidean space Rn

(n = 2 or 3). Let C0 : Rn×n
sym → Rn×n

sym be the fourth-order stiffness tensor of the body,
u : Rn → Rn be the displacement, and σ : Rn → Rn×n

sym be the stress. Assume that the body

is under the application of an average strain for some E ∈ Rn×n
sym :

u(x) = Ex +O(1) as |x| → +∞. (2)

In the absence of body force, the equilibrium state of the body requires that

divσ = 0 in Rn. (3)

Also, it is clear that a solution to the above equation with the boundary condition (2) is
given by

u = u0 := Ex in Rn.

Let Y ⊂ Rn be a “representative volume element” of the body. We now introduce N
mutually disjoint inhomogeneities Ωα ⊂ Y (α = 1, · · · , N) of materials with stiffness tensor
Cα. Two scenarios will be considered: (i) the inhomogeneities are distributed in a bounded
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region in Rn, and (ii) the inhomogeneities are distributed periodically in the whole space
Rn. The representative volume element Y is taken as the entire space Rn for the former
case whereas, without loss of generality, can be assumed to be Y = (0, 1)n for the latter
case. We remark that the latter case corresponds to a periodic composite with infinitely
many inhomogeneities occupying {Ωα +

∑n
i=1 kifi : α = 1, · · · , N ; k1, · · · , kn are integers}.

(f1, · · · , fn is the basis of our rectangular coordinate system for Rn.) Further, we denote by
Ω = (Ω1, · · · ,ΩN) and Ω0 = Y \ (∪Nα=1Ωα), and henceforth the stress-strain relation of the
inhomogeneous body is now given by

σ = CαE, E =
1

2
[∇u + (∇u)T ] in Ωα, α = 0, · · · , N. (4)

Upon inspecting (2), (3) and (4) , it is clear that if E → E
′

= aE for any constant a ∈ R,
then u → u′ = au. Therefore, without loss of generality we assume TrE = 1 subsequently.
Further, we define the average dilatational strain and stress on the matrix region Ω0 as

ϑ̄0 =

∫
−

Ω0

TrE, θ̄0 =

∫
−

Ω0

Trσ.

Here and subsequently,
∫
−
V

denote the average of the integrand over domain V . It is clear
that ϑ̄0 = 1 if Y = Rn.

The stress and strain concentrations are measured by the following concentration factors:

σ∗{Ω} :=
1

θ̄0

sup{‖σ(x)‖l∞ : x ∈ Rn}, e∗{Ω} :=
1

ϑ̄0

sup{‖E(x)‖l∞ : x ∈ Rn}. (5)

We remark that one may choose other suitable measures of the state of stress and strain
concentration, e.g., the norm that is consistent with the von Mises yield criterion (Eldiwany
and Wheeler, 1986). For fixed material properties (i.e., the stiffness tensor Cα) of each
inhomogeneity, the formal mathematical problems can be stated as

minimum stress concentration: inf{σ∗{Ω} : ∅ 6= Ωα ⊂ Rn, α = 1, · · · , N}; (6)

minimum strain concentration: inf{e∗{Ω} : ∅ 6= Ωα ⊂ Rn, α = 1, · · · , N}. (7)

3. Lower bounds of field concentration

Though the following argument may be generalized for anisotropic inhomogeneities of
different material properties and to include the conductivity problems (Liu, 2010), for sim-
plicity we assume all inhomogeneities are isotropic and of the same material property. In
this case, we simply regard Ω as the union of Ωα, i.e., Ω = ∪Ni=1Ωα. For future convenience,
let

θ = Tr(σ), ϑ = Tr(E)
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be the dilatational stress and strain, respectively. The Hooke’s law of the body can be
written as

σ = 2µE + λϑI, (µ, λ) =

{
(µ1, λ1) in Ω,

(µ0, λ0) in Ω0,
(8)

where (µα, λα) (α = 1, 2) are the Lamé constants if n = 3 and I is the identity matrix in
Rn×n. Then by (3) the equilibrium equation in the matrix phase can be written as

µ0∆u + (µ0 + λ0)∇(∇ · u) = 0 in Ω0. (9)

We remark that in two dimensions (n = 2), for plane stress the constants (µ, λ) are different
from the Lamé constants of the material. Instead, they are given by

µ =
E

2(1 + ν)
, λ =

νE

1− ν2
,

where E, ν are the Young’s modulus and Poisson’s ratio, respectively. Also, we have

θ = nκϑ, κ =

{
κ1 = 2µ1/n+ λ1 in Ω,

κ0 = 2µ0/n+ λ0 in Ω0,

where κ is referred to as the “bulk modulus” (not the actual bulk modulus for plane stress
or plane strain).

We now derive the lower bounds of stress and strain concentrations following the argu-
ment of Wheeler (2004). There will be two cases that require separate considerations.

3.1. Finite number of bounded inhomogeneities

If Y = Rn and all inhomogeneities Ωα are bounded, as shown in the next section the
argument of Wheeler (2004) applies to two dimensions as well as three dimensions. From
Wheeler (2004), we assert that for any geometries of a nonempty region Ω, the stress and
strain concentration factors are bounded from below as (ϑ̄0 = 1, θ̄0 = nκ0):{

e∗{Ω} ≥ ê? if µ0 > µ1,

σ∗{Ω} ≥ σ̂? if µ1 > µ0,
(10)

where

ê? =
2µ0 + λ0

n(κ1 − κ0 + 2µ0 + λ0)
=

2µ0 + λ0

2(n− 1)µ0 + 2µ1 + nλ1

, σ̂? =
κ1

κ0

ê?. (11)

3.2. Periodic array of inhomogeneities

A second interesting case concerns composites of two materials that may be modeled as
a periodic array of inhomogeneities embedded in the infinite matrix material. In this case,
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we shall interpret the boundary condition (2) as∫
−
Y

E(x)dv = E.

Further, from the homogenization theory we have∫
−
Y

θ(x)dv = nκe
∫
−
Y

E(x)dv = nκeTr(E) = nκe, (12)

where κe is the effective bulk modulus and satisfies the Hashin-Shtrikman’s bounds (Hashin
and Shtrikman, 1962; Milton, 2002):

κHS
L ≤ κe ≤ κHS

U .

Note that the expressions of the lower (κHS
L ) and upper (κHS

U ) Hashin-Shtrikman bounds
depend on the orderness of µ0, µ1 and κ0, κ1. In addition, we have∫

−
Y

ϑ(x)dv =
η

nκ1

∫
−

Ω

θ(x)dv +
(1− η)

nκ0

∫
−

Ω0

θ(x)dv = Tr(E) = 1, (13)

where η = vol(Ω)/vol(Y ) is the volume fraction of the inhomogeneities. Combining (12)
with (13), we can solve for the average θ(x) restricted to the inhomogeneities and the matrix
as follows:

θ̄1 :=

∫
−

Ω

θ(x)dv =
nκ1(κ0 − κe)
η(κ0 − κ1)

, ϑ̄1 =
κ0 − κe

η(κ0 − κ1)
,

θ̄0 :=

∫
−

Ω0

θ(x)dv =
nκ0(κ1 − κe)

(1− η)(κ1 − κ0)
, ϑ̄0 =

κ1 − κe

(1− η)(κ1 − κ0)
.

(14)

Note that θ̄0, ϑ̄0 > 0. Further, by (9) it is straightforward to verify that

∇2θ = 0 in Ω0,

∫
−

Ω0

θ = θ̄0.

By the maximum principle we conclude that

sup
∂Ω

θ+ ≥ θ̄0, (15)

where θ+ denote the boundary value of θ on ∂Ω approached from the matrix phase Ω0.
We now adapt the argument of Wheeler (2004) and derive lower bounds for stress and

strain concentration factors. Consider first the stress concentration. By the kinematic com-
patibility and balance law across the interfaces ∂Ω, we have that

[[σ]]n = 0, t · [[E]]t = 0 on ∂Ω, (16)

where [[ ]] denote the jump across the interface, and n and t is the unit normal vector and
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any unit tangential vector on ∂Ω, respectively. Set σnn = n · σn and enn = n · En. The
above equation implies that

[[σnn]] = 0, [[ϑ− enn]] = 0 on ∂Ω. (17)

By the Hooke’s law (8) we have σnn = 2µenn + λϑ and the second of (17) can be written as

[[(1 +
λ

2µ
)ϑ− 1

2µ
σnn]] = 0 on ∂Ω. (18)

Solving the above equation for σnn, by the first of (17) we obtain

(
1

2µ0

− 1

2µ1

)σnn = (1 +
λ0

2µ0

)
θ+

nκ0

− (1 +
λ1

2µ1

)
θ−

nκ1

on ∂Ω,

where θ+ (θ−) denotes the boundary values of θ outside (inside) Ω. Moreover, from the
definition (5) we have

1

n
θ−,

1

n
θ+, σnn ≤ θ̄0σ

∗{Ω} on ∂Ω.

Therefore, if µ1 > µ0 we have

θ̄0σ
∗{Ω} ≥ (1 +

λ0

2µ0

)
1

nκ0

[ 1

2µ0

− 1

2µ1

+ (1 +
λ1

2µ1

)
1

κ1

]−1

θ+

≥ (1 +
λ0

2µ0

)
1

nκ0

[ 1

2µ0

− 1

2µ1

+ (1 +
λ1

2µ1

)
1

κ1

]−1

θ̄0,

(19)

where the second inequality follows from (15).
Next we consider the problem of minimum strain concentration. Since σnn = 2µenn +λϑ,

the first of (17) can be written as

[[2µenn + λϑ]] = [[2µ(enn − ϑ) + (2µ+ λ)ϑ]] = 0 on ∂Ω.

Solving the above equation for ϑ− enn, by the second of (17) we obtain

(2µ0 − 2µ1)(ϑ− enn) = (2µ0 + λ0)ϑ+ − (2µ1 + λ1)ϑ−. (20)

From the definition (5) we have

1

n− 1
(ϑ− enn),

1

n
ϑ− ≤ ϑ̄0e

∗{Ω} on ∂Ω.

Therefore, if µ0 > µ1, equation (20) implies

ϑ̄0e
∗{Ω} ≥ (2µ0 + λ0)[2(n− 1)(µ0 − µ1) + n(2µ1 + λ1)]−1ϑ+

≥ (2µ0 + λ0)[2(n− 1)(µ0 − µ1) + n(2µ1 + λ1)]−1ϑ̄0.
(21)

To summarize, for an infinite body with periodic array of inhomogeneities we have the
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following lower bounds on stress and strain concentration factors for any domain Ω:{
σ∗{Ω} ≥ σ? if µ1 > µ0,

e∗{Ω} ≥ e? if µ0 > µ1,
(22)

where we have noticed that (c.f. (11))

(1 +
λ0

2µ0

)
1

nκ0

[ 1

2µ0

− 1

2µ1

+ (1 +
λ1

2µ1

)
1

κ1

]−1

= σ̂? =
κ1

κ0

ê?,

2µ0 + λ0

2(n− 1)(µ0 − µ1) + n(2µ1 + λ1)
= ê?.

(23)

We remark that the above lower bounds (22) recover the known results of Wheeler (2004)
in the dilute limit η → 0 (and hence κe → κ0).

4. E-inclusions as optimal shapes attaining the lower bounds

As observed by Wheeler (2004), inhomogeneities having uniform interface stress will be
the optimal geometries for minimum stress or strain concentration. A well-known class of
geometries that have uniform interface stress are ellipsoids (Eshelby, 1957; 1961). In the
context of composites, microstructures with uniform stress in one of the phases include the
construction of coated sphere (Hashin, 1962) and ellipsoids (Milton, 1981), and as shown by
Lipton (2004), these constructions also have minimum field concentrations.

Based on these constructions, we observe that the uniformity property of ellipsoids in a
variety of physical settings can be equivalently termed as that the solution of the Newtonian
potential problem {

∇2ξ = −χΩ in Rn,

|∇ξ| → 0 as |x| → ∞,
(24)

satisfies that

∇∇ξ = −Q in Ω (25)

for some 0 ≤ Q ∈ Rn×n
sym with TrQ = 1. Here χΩ, equal to one in Ω and zero otherwise,

denotes the characteristic function of domain Ω. Based on the above potential problem, we
introduce a class of new geometries, namely, E-inclusions or periodic E-inclusions, that enjoy
similar properties as an ellipsoid. In other words, an open bounded domain Ω ⊂ Rn is an
E-inclusion if a solution to (24) satisfies (25); an open bounded domain Ω ⊂ Y is a periodic
E-inclusion if a solution to the periodic counterpart of (24), i.e.,{

∇2ξ = η − χΩ in Y,

periodic boundary conditions on ∂Y,
(26)
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satisfies that

∇∇ξ = −(1− η)Q in Ω. (27)

For ellipsoids, the matrix Q depends only on the aspect ratios, i.e., characterizes the “shape”
(but not the size) of domain Ω. Subsequently, we refer to the symmetric matrix Q as the
shape matrix of E-inclusions or periodic E-inclusions

The existence of (periodic) E-inclusions has been reported in Liu et al. (2007; accepted).
We now show that (periodic) E-inclusions are the optimal geometries with minimum stress
or strain concentrations. We remark that Liu (2010) has shown that periodic E-inclusions
are also the optimal geometries attaining the Hashin-Shtrikman’s bounds for multiphase
composites. Again we shall have separate discussions about E-inclusions and periodic E-
inclusions.

4.1. Optimality of E-inclusions

Recall that TrE = 1. If Ω = ∪Nα=1Ωα is an E-inclusion such that the overdetermined
potential problem (24)-(25) admits a solution, and for some a ∈ R,

[2(µ0 − µ1)E + (λ0 − λ1)I] = a[2(µ0 − µ1)Q + (λ0 − λ1)I− (2µ0 + λ0)I], (28)

we claim that a solution to the elasticity boundary value problem (2), (3) and (8) is given
by

u = Ex + a∇ξ. (29)

We remark that the above claim may be directly verified by inserting (29) into (2), (3) and
(8). The idea behind this solution method tracks back to the celebrated work of Eshelby
(1957) and the so-called equivalent inclusion method (Eshelby 1957; Mura, 1987).

To find the constant a in (28) and (29), we take the trace of (28) and obtain

a =
κ1 − κ0

κ1 − κ0 + 2µ0 + λ0

. (30)

Inserting it back into (28) we find

E− aQ =
(2µ0 + λ1)a+ λ0 − λ1

2(µ1 − µ0)
I =

2µ0 + λ0

n(κ1 − κ0 + 2µ0 + λ0)
I = ê?I. (31)

By (28), (29) and (8), we find that the strain and stress in the body are given by

E = E + a∇∇ξ =

{
E− aQ = ê?I in Ω,

E + a∇∇ξ in Ω0,

and

σ =

{
nκ1ê

?I in Ω,

2µ0E + λ0(TrE)I + a(2µ0∇∇ξ) in Ω0,
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respectively. For any given unit vector m ∈ Rn, set

em = m · Em, σm = m · σm.

It is easy to check that{
∆em = 0 in Ω0,

em = ê? + a(m · n)2 on ∂Ω+,

{
∆σm = 0 in Ω0,

σm = 2µ0[ê? + a(n ·m)2] + λ0 on ∂Ω+,

respectively. By the maximum principle, we conclude that for E-inclusions with the shape
matrix Q satisfying (28), the maximum l∞-norms of the strain and stress in the entire
inhomogeneous body are given by

e∗{Ω} = max{|ê?|, |ê? + a|} =

{
ê? + a if κ1 > κ0,

ê? if κ1 < κ0,
(32)

and

nκ0σ
∗{Ω} =

{
|2µ0(ê? + a) + λ0| = nκ1ê

? = σ̂?nκ0 if κ1 > κ0,

2µ0ê
? + λ0 if κ1 < κ0,

(33)

respectively. Comparing (32) and (33) with (10), for average strain E with TrE = 1 we
conclude that (i) E-inclusions with shape matrix Q = 1

a
(E − ê?I) are solutions to the opti-

mization problem (7) with minimum strain concentration if κ1 < κ0 and µ1 < µ0, and are
solutions to the optimization problem (6) with minimum stress concentration if κ1 > κ0 and
µ1 > µ0.

4.2. Optimality of periodic E-inclusions

If Ω = ∪Nα=1Ωα is a periodic E-inclusion with volume fraction η and shape matrix Q, i.e.,
the overdetermined potential problem (26)-(27) admits a solution, and for some constant
aη ∈ R,

[2(µ0 − µ1)E + (λ0 − λ1)I] = aη{(1− η)[2(µ0 − µ1)Q + (λ0 − λ1)I]− (2µ0 + λ0)I}, (34)

we claim that a solution to the elasticity boundary value problem (2), (3) and (8) is given
by

u = Ex + aη∇ξ. (35)

Taking the trace of (34) we obtain

aη =
κ1 − κ0

(κ1 − κ0)(1− η) + 2µ0 + λ0

. (36)
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Inserting the above equation back into (34) we find that (cf., (14))

E− aη(1− η)Q =
(2µ0 + λ0)aη + (λ0 − λ1)(1− aη(1− η))

2(µ1 − µ0)
I

=
2µ0 + λ0

n[(κ1 − κ0)(1− η) + 2µ0 + λ0]
I

=
(κ1 − κe)ê?

(1− η)(κ1 − κ0)
I = ê?ϑ̄0I,

(37)

where

κe = κ0 +
η(2µ0 + λ0)(κ1 − κ0)

(1− η)(κ1 − κ0) + 2µ0 + λ0

is the effective bulk modulus of the composite.
By (34), (35) and (8), we find that the strain and stress in the body are given by

E = E + aη∇∇ξ =

{
E− aη(1− η)Q = ê?ϑ̄0I in Ω,

E + aη∇∇ξ in Ω0,

and

σ =

{
σ̂?θ̄0I in Ω,

2µ0E + λ0(TrE)I + aη(2µ0∇∇ξ) in Ω0,

respectively. For any given unit vector m ∈ Rn, set

em = m · Em, σm = m · σm.

Again, we find that{
∆em = 0 in Ω0,

em = ê?ϑ̄0 + aη(m · n)2 on ∂Ω+,

{
∆σm = 0 in Ω0,

σm = 2µ0[ê?ϑ̄0 + aη(n ·m)2] + λ0 on ∂Ω+,

respectively. By the maximum principle, we conclude that for periodic E-inclusions with the
shape matrix Q satisfying (28), the maximum l∞-norms of the strain and stress in the entire
inhomogeneous body are given by

ϑ̄0e
∗{Ω} = ϑ̄0 max{|ê?|, |ê? + aη|} =

{
ê?ϑ̄0 + aη if κ1 > κ0,

ê?ϑ̄0 if κ1 < κ0,
(38)

and

θ̄0σ
∗{Ω} =

{
|2µ0(ê? θ̄0

nκ0
+ aη) + λ0| = nκ1ê

? θ̄0
nκ0

= σ̂?θ̄0 if κ1 > κ0,

2µ0ê
? θ̄0
nκ0

+ λ0 if κ1 < κ0,
(39)
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Figure 1: A five component E-inclusion in two dimensions with shape matrix Q = 1
2I.

respectively. Comparing (38) and (39) with (22), for average strain E with TrE = 1 we
conclude that (i) periodic E-inclusions with shape matrix Q = 1

aη(1−η)
(E−ϑ̄0ê

?I) are solutions

to the optimization problem (7) with minimum strain concentration if κ1 < κ0 and µ1 < µ0,
and are solutions to the optimization problem (6) with minimum stress concentration if
κ1 > κ0 and µ1 > µ0.

5. Examples of E-inclusions and proposed applications

E-inclusions (resp. periodic E-inclusions) are defined by the overdetermined problem-
s (24)-(25) (resp. (26)-(27)). Upon specifying the shape matrix Q, volume, and mutual
distances and orientations, we may construct the E-inclusion by solving a variational in-
equality problem (Liu, 2008). For example, Figure 1 shows a five component E-inclusion
corresponding to shape matrix Q = 1

2
I ∈ R2×2 whereas Fig. 2 (b)-(e) show a single peri-

odic array of E-inclusions with period d, shape matrix Q = diag[2/3; 1/3] and of different
area A and different length ax. The reader is referred to Vigdergauz (1976), Grabovsky and
Kohn (1995b), Liu et al (2007; accepted) and Liu (2008) for more examples of (periodic)
E-inclusions in two and three dimensions. Compared to ellipsoids, a critical advantage of
E-inclusions lies in that E-inclusions can be disconnected, consists of a number of inclusions
and retain the uniformity and optimality properties of ellipsoids. In other words, the in-
teractions between inhomogeneities have been rigorously taken into account (Vigdergauz,
2008).

Being the optimal geometries with minimum field concentrations, E-inclusions and pe-
riodic E-inclusions have many potential applications in engineering when the field concen-
tration is a major concern. For example, in using rivets to bond structural members, the
bridges between neighboring holes sustain larger local stress and prone to fail (cf., Fig. 2(a)).
To remedy this issue, holes of the shapes of E-inclusions can be used so that the stress
concentration can be minimized. Depending the applied remote or average strain, the shape
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Figure 2: (a) A single period of holes of spacing d under the application of some remote strain. The optimal
shapes such that strain concentration is minimized for different areas (A) and lengths (ax): (b) ax = 0.3d
and A = 0.054d2; (c) ax = 0.51d and A = 0.21d2; (d) ax = 0.62d and A = 0.48d2; (e) ax = 0.64d and
A = 0.87d2. The shape matrix of (b)-(e) is Q = diag[2/3, 1/3].

matrix Q of the E-inclusions satisfies (η = 0 if Y = Rn)

Q ∝ E− ϑ̄0ê
?I = E− 2µ0 + λ0

n[(1− η)(κ1 − κ0) + 2µ0 + λ0]
I. (40)

Since E-inclusions exist only for positive semi-definite shape matrix Q, the above equation
admits a solution for average applied average strain E with TrE = 1 if

eigmin(E) ≥ 2µ0 + λ0

n[(1− η)(κ1 − κ0) + 2µ0 + λ0]
or

eigmax(E) ≤ 2µ0 + λ0

n[(1− η)(κ1 − κ0) + 2µ0 + λ0]
,

where eigmax (eigmin) denotes the maximum (minimum) eigenvalues. If the average applied
strain E with TrE = 1 does not satisfy the above inequality, the optimal design problems (6)-
(7) concerning minimum strain or stress concentration remain open; the works of Cherkaev
et al. (1998) and Vigdergauz (2006; 2008) provide approximate solutions and significant
insight.

13



6. Summary and discussion

In this paper we have shown that (periodic) E-inclusions are optimal geometries for min-
imum strain or stress concentration for heterogeneous media or structures. It is worthwhile
noticing that E-inclusions are not the only optimal geometries. In general, it can be shown
that micro-geometries that attain the Hashin-Shtrikman bulk modulus bounds are also op-
timal for minimum stress or strain concentration, including the coated ellipsoids or spheres
(Hashin 1962; Milton, 1984; Grabovsky and Kohn, 1995a), Vigdergauz microstructures or
E-inclusions in two dimensions (Vigdergauz 1987; Grabovsky and Kohn, 1995b), and multi-
rank laminations. The underlying reason can be understood from the optimal conditions.
To be precise, we consider periodic array of inhomogeneities discussed in § 3.2 and assume
that (i) the domain Ω is regular with smooth boundary ∂Ω, and (ii) two stiffness tensors are
strickly well-ordered. As one tracks back our argument for the lower bound in § 3.2, the first
inequality in (22) hold as an equality if (i) θ = θ̄0 in Y \Ω (cf., (15)) and, (ii) σ = θ̄0σ̂

?I on
Ω (cf., (19)). In other words, the actual displacement u shall satisfies the following equation:

div[C(x)∇u] = 0 in Y \ ∂Ω,
1
2
[∇u + (∇u)T ] = ê? θ̄0

nκ0
I in Ω,

∇ · u = θ̄0
nκ0

in Y \ Ω,∫
−
Y
∇u = E,

(41)

where C(x) denotes the stiffness tensor of the periodic composite. For periodic microstruc-
tures with a scalar potential ξ satisfying the overdetermined problem (26)-(27), it is easy
to verify that the above equations are satisfied by u = aη∇ξ + Ex. Moreover, it has been
shown (Grabovsky, 1996; Liu, 2010) that any periodic microstructures attaining the Hashin-
Shtrikman’s bounds have to be such that the overdetermined problem (26)-(27) admits a
solution. Similar argument can be applied to the second inequality in (22). Therefore, the
classical constructions of coated ellipsoids, Vigdergauz microstructures and multi-rank lami-
nates that attain the Hashin-Shtrikman’s bounds are also optimal microstructures achieving
bounds (22) with minimum stress or strain concentration. This motivates an interesting
question: does equation (41) admitting a solution imply the overdetermined problem (26)-
(27) admits a solution? A positive answer to this question will imply optimal microstructures
for minimum stress or strain concentration have to be identical to optimal microstructures
attaining the Hashin-Shtrikman’s bounds. A proof, however, appears to be elusive and will
not be discussed here.
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