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Abstract

Magnetoelectric coupling is of interest for a variety of applications, but is weak
in natural materials. Strain-coupled fibrous composites of piezoelectric and piezo-
magnetic materials are an attractive way of obtaining enhanced effective magneto-
electricity. This paper studies the effective magnetoelectric behaviors of two-phase
multiferroic composites with periodic array of inhomogeneities. For a class of mi-
crostructures called periodic E-inclusions, we obtain a rigorous closed-form formula
of the effective magnetoelectric coupling coefficient in terms of the shape matrix and
volume fraction of the periodic E-inclusion. Based on the closed-form formula, we
find the optimal volume fractions of the fiber phase for maximum magnetoelectric
coupling and correlate the maximum magnetoelectric coupling with the material
properties of the constituent phases. Based on these results, useful design principles
are proposed for engineering magnetoelectric composites.
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1 Introduction

Magnetoelectricity (ME) refers to the magnetization induced by an electric
field, or conversely the polarization induced by a magnetic field. The ME ef-
fect has many important technological applications, ranging from large-area
sensitive detection of magnetic fields (Fiebig, 2005), magnetoelectric memo-
ry cells (Kumar et al., 2009), and to electrically controlled microwave phase
shifters (Bichurin et al., 2002). However, the ME coupling coefficient is bare-
ly noticeable for most single-phase materials in spite of recent discovery of
gigantic magnetoelectric effects in TbMnO3 at cryogenic temperature (Kimu-
ra et al., 2003). Therefore various researchers have turned to composites or
nano-structured materials (Zheng et al., 2004; Fennie, 2008), as explained in
recent reviews of Eerenstein et al. (2006) and Nan et al. (2008). The “prod-
uct property” causes the ME effect in composites of piezoelectric (PE) and
piezomagnetic (PM) materials: an applied electric field generates a strain in
the piezoelectric material which in turn induces a strain in the piezomagnetic
material, resulting in a magnetization.

The promise of applications, and the indirect coupling through strain have al-
so made ME composites the topic of a number of theoretical and experimental
investigations (Nan et al., 2008; Zheng et al., 2004). The estimates of the ef-
fective properties of ME composites of non-dilute volume fractions are usually
obtained by mean-field-type models (Nan, 1994; Srinivas and Li, 2005). Exact
relations in a ME composite with composite cylinder assemblage microgeome-
try were derived by Benveniste (1995), and the analysis for local fields is avail-
able for simple microstructures such as a single ellipsoidal inclusion (Huang
and Kuo, 1997; Li and Dunn, 1998a), periodic array of circular/elliptic fibrous
ME composites (Kuo, 2011; Kuo and Pan, 2011) and laminates (Kuo et al.,
2010), etc. Numerical methods based on the finite element method have also
been developed to address ME composites for general microstructures (Liu et
al., 2004; Lee et al., 2005), while homogenization methods were proposed by
Aboudi (2001) and Camacho-Montes et al. (2009).

In this paper we consider two-phase composites of piezoelectric (PE) materials
and piezomagnetic (PM) materials and seek closed-form predictions of their
effective properties by generalizing the uniformity property of ellipsoids to
other geometries, namely, periodic E-inclusions. In the classic work of Eshel-
by (1957, 1961), he discovered that any uniform eigenstress on an ellipsoidal
inclusion induces uniform strain on the inclusion in an infinite homogeneous
medium. This remarkable uniformity property of ellipsoids allows for rigorous
closed-form solutions to inhomogeneous problems by the so-called equivalent
inclusion method, which has been used to develop many important materials
models concerning composites, phase transformations, dislocations and crack-
s, etc. (Mura, 1987). However, since two or more ellipsoids do not enjoy the
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uniformity property, analysis based on Eshelby’s solution and the equivalent
inclusion method cannot account for the interactions between inhomogeneities,
e.g., composites with non-dilute inhomogeneities. To overcome this limitation,
mean-field-type Mori-Tanaka models have been developed to address multi-
ferroic composites by Li and Dunn (1998a,b), Huang (1998), Li (2000), Wu
and Huang (2000) and Srinivas et al. (2006). In addition, a phase-field method
based on a generalized Eshelby’s equivalency principle is proposed for arbi-
trary microstructures (Ni et al., 2010).

Following the work of Eshelby (1957), Liu et al. (2007; 2008) have recently
found a periodic generalization of ellipsoids called periodic E-inclusions (also
called Vigdergauz microstructures in two dimensions). Periodic E-inclusions
share partially the uniformity property of ellipsoids: a uniform dilatational
eigenstress on the periodic E-inclusions induces uniform strain on the periodic
E-inclusions for isotropic materials. Since it is not the ellipsoid per se but
its uniformity property that is being used in the classic analysis based on
Eshelby’s solution, we extend the argument of equivalent inclusion method
for ellipsoidal inclusions to periodic E-inclusions and achieve explicit closed-
form solutions to the effective properties of the composites and local fields.
This strategy has been used to predict the effective properties of conductive
composites (Liu, 2009) and elastic composites (Liu et al., 2008). Here we
present the detailed calculations for composites of PE and PM materials.
Aiming to improve the magnetoelectric (ME) coupling of the composite, we
further study how the effective ME voltage coefficient, the figure of merit of ME
materials, depends on the volume fraction, the topology of microstructures and
the material properties of constituent phases. In particular, we find the optimal
volume fraction of the fiber phase for maximum effective voltage coefficient
and draw a few useful design principles, which are summarized in Section 5.

The paper is organized as follows. In Section 2 we formulate the governing
equation for a periodic piezoelectric-piezomagnetic composite and define the
effective properties of the composite. In Section 3 we introduce the periodic
E-inclusion and derive the closed-form formula of the effective properties of
a composite with a periodic E-inclusion microstructure. In Section 4 we s-
tudy how the magnetoelectric voltage coefficient depends on volume fractions
of the fiber phase and material properties of constituent phases. Finally we
summarize a few useful design principles in Section 5.

2 Problem statement

We consider a composite consisting of a periodic array of parallel and separated
prismatic cylinders as sketched in Fig. 1. The cylinders and the matrix are
made of distinct phases: transversely isotropic piezoelectric or piezomagnetic
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Fig. 1. Configuration of the fibrous composite: (a) the overall composite and (b) a
unit cell in the xy-plane with Ω being one phase and Y \ Ω being the other phase.

materials. A Cartesian coordinate system is introduced with the xy-axes in
the plane of the cross-section and z-axis along the axes of the cylinders. Let
Y be a unit cell in the xy-plane and Ω ⊂ Y denote the cross-section of the
cylinder in this unit cell.

Assume that the composite be subjected to anti-plane shear strains εzx, εzy,
in-plane electric fields Ex, Ey and magnetic fields Hx, Hy at infinity. It can
be shown that the composite is in a state of generalized anti-plane shear
deformation and can be described by (Benveniste, 1995)

ux = uy = 0, uz = w(x, y),

ϕ = ϕ (x, y) , ψ = ψ (x, y) ,
(1)

where ux, uy, uz are the elastic displacements along the x- , y-, and z- axis,
and ϕ and ψ are, respectively, the electric and magnetic potentials.

The general constitutive law of the rth phase for the non-vanishing field quan-
tities can be written in a compact form as

Σ(r) = L(r)Z(r), L(r) =

L(i) if x ∈ Ω,

L(m) if x ∈ Y \Ω,
(2)

where for ease of the terminology, r = “m” (r = “i” ) refers to the matrix
(inclusion) phase,

Σ(r) =


σzx, σzy

Dx, Dy

Bx, By


(r)

, Z(r) =


εzx, εzy

−Ex, −Ey

−Hx, −Hy


(r)

=


∂xw, ∂yw

∂xϕ, ∂yϕ

∂xψ, ∂yψ


(r)

, (3)
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and (p, q = 1, 2, 3; i, j = 1, 2 or x, y)

L
(r)
piqj = A(r)

pq δij, A(r)
pq =


C44 e15 q15

e15 −κ11 −λ11

q15 −λ11 −µ11


(r)

. (4)

In Eq. (3) and Eq. (4), σzj, Dj, Bj, εzj, Ej, and Hj (j = x, y) are the stress,
electric displacement, magnetic flux, strain, electric field, and the magnetic
field, respectively. The materials constants C44, κ11, µ11 and λ11 are the elastic
modulus, dielectric permittivity, magnetic permeability and ME coefficient,
while e15 and q15 are the piezoelectric and piezomagnetic constants. The shear
strains εzx and εzy, in-plane electric fields Ex, Ey, and in-plane magnetic fields
Hx and Hy are given by the gradient of the elastic anti-plane displacement w,
electric potential ϕ, and magnetic potential ψ.

We assume the microstructure of the composite is periodic and the composite
is subject to a macroscopic average applied field

F =


εzx εzy

−Ex −Ey

−Hx, −Hy

 .

From the homogenization theory (Milton, 2002), the microscopic local fields
and effective properties are determined by the unit cell problem∇ · [L (x) (∇u + F)] = 0 on Y,

periodic boundary conditions on ∂Y,
(5)

where u = [w,ϕ, ψ]T is the column vector field formed by the displacement,
electric and magnetic potentials, and the tensor L(x) takes the value of L(i) if
x ∈ Ω and L(m) if x ∈ Y \Ω. Further, the effective properties of the composite,
denoted by the tensor Le, are given by

Σ = LeF, Σ =
1

|Y |

∫
Y

Σ (x) dx, Σ (x) = L (x) (∇u + F) , (6)

where | · | denotes the area of a domain. From Eq. (6), we can alternately
define the effective tensor Le by the quadratic form
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F · LeF =
1

|Y |

∫
Y

F · L (x) (∇u + F) dx. (7)

3 The closed-form solutions

A closed-form analytical solution to Eq. (5) is not anticipated for general
microstructure. Nevertheless, for periodic E-inclusions we solve Eq. (5) by the
well-known Eshelby equivalent inclusion method. Below we first present a brief
description of periodic E-inclusions and then solution to Eq. (5).

3.1 Periodic E-inclusions: existence and property

Motivated by the broad applications of Eshelby’s solutions in a variety of
materials models, Liu, James and Leo (2007; 2008) generalized the geometric
shape of ellipsoids according to their uniformity property in the context of
Newtonian potential problem, i.e., the Newtonian potential φ : IRn → IR
(n ≥ 2 is the dimension of space) induced by a homogeneous ellipsoid Ω
satisfies the overdetermined problem:


∆φ = −χΩ on IRn,

∇∇φ = −Q on Ω,

|∇φ| → 0 as |x| → +∞,

(8)

where χΩ is the characteristic function of Ω, equal to one on Ω and vanishing
otherwise, and Q is a nonnegative symmetric n×n matrix with Tr(Q) = 1. In
analogy with Eq. (8), a periodic E-inclusion in a unit cell Y ⊂ IRn is defined
as a domain Ω such that the solution to the potential problem(Liu et al., 2008)∇

2φ = f − χΩ on Y,

periodic boundary conditions on ∂Y,
(9)

satisfies the overdetermined condition

∇∇φ = −(1− f)Q on Ω, (10)

where f = |Ω|/|Y | is the volume fraction of the inclusion. The terminology
“E-inclusion” arises from the associations with “Eshelby”, “Ellipsoid” and
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“Extremal” properties of such geometries.

The overdetermined condition Eq. (10) places strong restrictions on the do-
main Ω. The existence of periodic E-inclusions can be established by consid-
ering a simple variational inequality (Friedman, 1982):

G[φ] = min
u∈W

{
G[u] :=

∫
Y

[1
2
|∇u|+ fu]

}
, (11)

where the admissible potential W := {u : u ≥ ξ, u is periodic on Y } and
ξ : Y → IR is a given function referred to as the “obstacle”. Loosely speaking,
the variational inequality Eq. (11) models an elastic membrane being pushed
down onto the obstacle formed by the graph of ξ. Then one anticipates that
part of the membrane will be in contact with the obstacle, defining the the
coincident set ΩC := {x ∈ Y : φ(x) = ξ(x)}. Under some mild conditions, it
can be shown the solution φ to Eq. (11) in fact satisfies the overdetermined
problem


∆φ = −∆ξχΩC

+ fχY \ΩC
on Y,

∇∇φ = ∇∇ξ on ΩC ,

periodic boundary conditions on ∂Y.

(12)

If, in particular, one chooses a quadratic obstacle ξ = −1−f
2

(x−d0) ·Q(x−d0)
with d0 being the center of the unit cell Y , comparing Eq. (12) with Eq. (9)-
Eq. (10) one concludes that the coincident set ΩC is precisely a periodic E-
inclusion. The interested reader is referred to Liu et al. (2008) for details of
the above existence proof.

Fig. 2. Periodic E-inclusions (Vigdergauz structures) with unit cell [0, 1.5] × [0, 1]
and isotropic shape matrix Q = I/2. From inward to outward, the volume fraction
of the inclusion increases from 0.1 to 0.7.
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Geometrically, the shape of a periodic E-inclusion in IRn is prescribed by the
scalar volume fraction f , the symmetric shape matrix Q ∈ IRn×n and the unit
cell Y associated to the periodicity. In the dilute limit the shape matrix Q
coincides with the demagnetizaton matrix of an ellipsoid in the study of ferro-
magnetics and is determined by the aspect ratios and orientations of the ellip-
soid. In two dimensions, explicit parameterizations of periodic E-inclusions are
available for a rectangular unit cell (Vigdergauz, 1988; Grabovsky and Kohn,
1995; Liu et al., 2007) and examples of periodic E-inclusions in the unit cell
[0, 1.5] × [0, 1] are shown in Fig. 2 for isotropic shape matrix Q = I/2 and
volume fractions from 0.1 to 0.7. From Fig. 2 we see that a two-dimensional
periodic E-inclusion of isotropic shape matrix is roughly a circle at a low vol-
ume fraction, say, 0.1, and a rounded rectangle of roughly the same aspect
ratio as the unit cell at a high volume fraction, say, 0.7. For more general u-
nit cells and in three dimensions, periodic E-inclusions can be constructed by
solving the above variational inequality (11) and numerical calculations show
similar qualitative dependence of the shape on the volume fraction (Liu et al.,
2007; 2008).

3.2 Applications to magnetoelectric composites

We now solve Eq. (5) by the equivalent inclusion method for periodic E-
inclusions. To this end, we first consider the associated homogeneous inclusion
problem

∇ ·
[
L(m)∇u + Σ∗χΩ

]
= 0 on Y,

periodic boundary conditions on ∂Y,
(13)

where Σ∗ ∈ IR3×2 is the “eigenstress”. We remark that the physical interpreta-
tions of equations Eq. (5) and Eq. (13) are different from the classic Eshelby
inclusion problem in elasticity, though their forms appear to be the same.
Further, the applied periodic boundary conditions in Eq. (5) and Eq. (13)
take into account the interactions between the inclusions which are neglect-
ed or phenomenologically accounted for by the analysis based on Eshelby’s
solution.

The solution to Eq. (13) is closely related with the following simple potential
problem Eq. (9). To see this, by Fourier transformations we find that

∇∇φ(x) = −
∑

k∈K\{0}

k⊗ k

|k|2
χ̂Ω(k) exp(ik · x) ∀x ∈ Y, (14)
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where K is reciprocal lattice associated with the unit cell Y (i.e., Y is a prim-
itive unit cell associated with the lattice L and K is the reciprocal lattice of
L), and χ̂Ω(k) =

∫
Y χΩ exp(−ik · x)dx are the Fourier coefficients of the char-

acteristic function χΩ(x). Similarly, the solution to Eq. (13) can be expressed
as

∇u (x) = −
∑

k∈K\{0}
(NΣ∗k)⊗ kχ̂Ω(k) exp(ik · x), (15)

where the 3× 3 symmetric matrix N(k) is the inverse of the matrix L
(m)
piqjkikj.

In Eq. (15), for clarity we omit the k-dependence of N in notation. From the
particular form of L(m) defined in Eq. (4), direct calculations reveal that

L
(m)
piqjkikj = A(m)

pq |k|2, N(k) = 1
|k|2 (A(m))−1. (16)

Comparing Eq. (14) with Eq. (15), we conclude that

∇u = (A(m))−1Σ∗∇∇φ on Y. (17)

We emphasize that the above relation between the solution to the system of
equations Eq. (13) and the scalar potential problem Eq. (9) holds for any
inclusion Ω.

Further, we assume the inclusion Ω is a periodic E-inclusion with shape ma-
trix Q and volume fraction f . From the definition of periodic E-inclusions
discussed above, the solution to Eq. (9) for a periodic E-inclusion satisfies the
overdetermined condition Eq. (10). By Eq. (17) and Eq. (10), we conclude
that the periodic E-inclusion has the Eshelby uniformity property for the ho-
mogeneous periodic problem (13) in the sense that the field ∇u is uniform
inside the inclusion Ω, and is given by

∇u = −(1− f)RΣ∗ on Ω, (18)

where the components of the tensor R : IR3×2 → IR3×2 are given by

Rpiqj =
(
A(m)

)−1

pq
Qij (p, q = 1, 2, 3; i, j = 1, 2). (19)

Here the reader is cautioned that ∇u being uniform on periodic E-inclusions
for any applied “eigenstress” Σ∗ depends on a property of tensor L(m), i.e., the
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matrix N(k) is independent of k upon being multiplied by a scalar factor |k|2.
From this viewpoint, periodic E-inclusions does not enjoy the full uniformity
property as ellipsoids, as shown in Liu (2010) by the complex variable method.

We now consider the inhomogeneous problem (5). Following the equivalent
inclusion method we claim that the solution to Eq. (5) is identical to that of
Eq. (13) if the average applied field F for Eq. (5) and the “eigenstress” Σ∗ for
Eq. (13) are related by

MLF = (1− f)MLRΣ∗ −Σ∗ = [(1− f)MLR− II]Σ∗, (20)

where ML = L(m) − L(i), and II : IR3×2 → IR3×2 is the identity mapping. To
see this, we first notice that a solution to Eq. (13) with uniform field inside Ω
(cf. Eq. (18)) satisfies Eq. (5) inside the matrix Y \Ω since they are the same
equations, and inside the inclusion Ω since ∇u is uniform on Ω. Further, on
the interface ∂Ω we find that Eq. (5) requires the interfacial conditions

[L(i)(∇u(x−) + F)− L(m)(∇u(x+) + F)]n = 0 on ∂Ω, (21)

where n is the outward normal on ∂Ω, and x− (x+) denotes the boundary
value approached from inside (outside) Ω. Similarly, equation (13) implies the
interfacial conditions

[L(m)∇u(x−) + Σ∗ − L(m)∇u(x+)]n = 0 on ∂Ω. (22)

A brief and straightforward algebraic calculation shows that if Eq. (22) is
satisfied and ∇u(x−) is given by Eq. (18), then Eq. (21) is satisfied as well
for any average applied field F satisfying Eq. (20). We henceforth conclude
that the solution to the homogeneous problem (13) is indeed a solution to the
inhomogeneous problem (5) if the uniformity property Eq. (18) holds and the
algebraic relation Eq. (20) is satisfied.

To calculate the effective tensor of the composite, by Eq. (7) and Eq. (18) we
find that the effective tensor Le satisfies

F · LeF =
1

|Y |

∫
Y

F · (L(m) − MLχΩ) (∇u + F) dx

= F · L(m)F− fF · ML[−(1− f)RΣ∗ + F].

By Eq. (20) we rewrite the above equation as

F · LeF = F · L(m)F + fF ·Σ∗.
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Further, it can be shown that the tensor (1 − f)MLR − II is invertible for
generic cases and the above equation implies

Le = L(m) + f [(1− f)MLR− II]−1ML, (23)

which is our closed-form formula of the effective properties for two-phase com-
posites of PM and PE materials.

A few remarks are in order regarding Eq. (23). First, it is a rigorous closed-
form prediction to the effective properties of periodic composites of PE and
PM materials with microstructures being periodic E-inclusions and there is
no phenomenological parameters in Eq. (23). Also, we do not need to com-
pute the generalized Eshelby tensor which is usually quite time consuming in
the classic analysis based on the Eshelby’s works. Second, the assumption of
unit cell Y being rectangular is not essential since there exist corresponding
periodic E-inclusions for any unit cell with any given positive semi-definite
shape matrix Q with Tr(Q) = 1 and volume fraction f ∈ (0, 1). If we send
the shape matrix Q to a degenerate matrix with eigenvalues {0, 1}, the in-
clusion degenerates to a laminate regardless of the unit cell Y and Eq. (23)
recovers the formula for simple laminated composites. Third, the anisotropy
of the effective tensor Le is determined by the anisotropy of microstructure
(i.e., the shape matrix Q ) and the anisotropy of the materials. As illustrat-
ed in Fig. 2, the aspect ratios of the inclusions alone cannot determine the
anisotropy of the microstructure (i.e., the shape matrix Q). Another geometric
feature, particularly important for periodic composites of any microstructure
at high volume fractions, is the unit cell Y or equivalently the inter-distance
and inter-orientation between one inclusion and its neighbors. Equation (23)
offers a practical and simple way to characterize the anisotropy of the mi-
crostructure from the measured anisotropy of one kind of effective properties,
e.g., the effective electric conductivity, which in turn can be used to predict
other effective properties including the effective ME tensors. Finally, we may
use Eq. (23) to design the anisotropy of the microstructure according to the
desired anisotropy of the effective ME composites in applications.

4 Applications

Below we apply the closed-form solution Eq. (23) to the design of ME compos-
ites. For simplicity we will assume the microstructure is isotropic in the sense
that the shape matrix Q = I/2. A material property of particular interest is
the ME voltage coefficient αE,11 = λe11/κ

e
11, where λe11 (κe11) is the effective

ME coupling coefficient (dielectric permittivity) of the composite. The effec-
tive ME voltage coefficient αE,11 relates the overall electric field generated in
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Table 1: Material parameters of BaTiO3
1, CoFe2O4

1, P(VDF-TrFE) 2 and
Terfenol-D(epoxy) 3,4.

Property BaTiO3 CoFe2O4 P(VDF-TrFE) Terfenol-D(epoxy)

C44 (N/m2) 43.0G 45.3G 0.256G 13.6G

e15(C/m2) 11.6 0 -0.015 0

q15(N/Am) 0 550 0 108.3

κ11(C2/Nm2) 11.2× 10−9 0.08× 10−9 0.07× 10−9 0.05× 10−9

µ11(Ns2/C2) 5× 10−6 590× 10−6 1.26× 10−6 5.4× 10−6

λ11(Ns/VC) 0 0 0 0

[1] J. Y. Li, and M. L. Dunn, J. Intell. Mater. Syst. Struct. 9, 404 (1998); [2] Nan, C. W., M.

Li, et al., Physical Review B 63(14): 144415 (2001); [3] Y. X. Liu, J. G. Wan, J. -M. Liu, and

C. W. Nan, J. Appl. Phys. 94, 5111 (2003); [4] G. Liu, C. -W. Nan, N. Cai, and Y. Lin, J.

Appl. Phys. 95, 2660 (2004).

the composite with the applied magnetic field and is the figure of merit for
magnetic field sensors.

As a first example, we choose the widely used BaTiO3 (BTO) as the piezo-
electric phase and CoFe2O4 (CFO) as the piezomagnetic phase. Both BTO
and CFO are transversely isotropic, i.e. with 6mm symmetry. The indepen-
dent material constants are listed in Table 1 in Voigt notation, where the xy
plane is isotropic and the fiber axis is along the z-direction. Note that in all
materials the ME coefficient λ11 = 0. We consider both cases: BTO fibers in
a CFO matrix and CFO fibers in a BTO matrix.

Fig. 3. The predicted ME voltage coefficients versus volume fractions: (a) BTO fibers
in CFO matrix and (b) CFO fibers in BTO matrix. In both (a) and (b), the solid
line “—” is based on the presented closed-form solution for periodic E-inclusions
with shape matrix Q = I/2, i.e., Eq. (23); the dotted line “ . . .” is from Benveniste
(1995); the dashed line “— —” is from Kuo (2011).
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Figure 3 shows how the ME voltage coefficient depends on the volume fraction
of the inclusion. The ME voltage coefficient is non-zero for every non-zero
volume fraction of the inclusion even though this coefficient is zero for each
constituent phase. This reflects the magnetoelectric coupling is mediated by
the elastic interaction and implies that there is an optimal volume fraction for
the desired maximum ME voltage coefficient. Figure 3(a) shows the maximum
(absolute value) ME voltage coefficient occurs at the volume of fopt = 0.35 with
αE,11 = 0.0306V/cmOe in the case of BTO fibers in a CFO matrix, whereas
Figure 3(b) shows the maximum (absolute value) ME voltage coefficient occurs
at the volume of fopt = 0.98 with αE,11 = 0.0245V/cmOe in the case of CFO
fibers in a BTO matrix. Figures 3(a) & (b) also compare with the effective
ME voltage coefficients predicted by Kuo (2011) who used multiple expansion
technique and by Benveniste (1995) who employed the composite cylinder
assemblage (CCA) model. In Kuo (2011), the curve stops at f = π/4 when the
inclusions begin to touch each other. Still, the overall magnitudes and trends
agree well among predictions based on the closed-form solutions for periodic E-
inclusions, Kuo’s model, and Beveniste’s CCA, and in particular Benveniste’s
CCA gave the same predictions as the present closed-form solutions. Further,
our numerical results fulfil the compatibility conditions given in Eq. (21) of
the work by Benveniste (1995).

Next, we study how the effective ME voltage coefficient depends on the elastic
moduli C44,PE and C44,PM , dielectric permittivities κ11,PE and κ11,PM , magnet-
ic permeabilities µ11,PE and µ11,PM of the PE and PM materials, piezoelectric
coefficient e15,PE of the PE material, and piezomangetic coefficient q15,PM of
the PM material. For ease of comparison, we choose the material properties of
BTO and CFO as the reference and define the normalized material properties
of the PE and PM phases as

Ĉ44,PE =
C44,PE

C44,BTO

, Ĉ44,PM =
C44,PM

C44,CFO

, κ̂11,PE =
κ44,PE

κ44,BTO

,

and likewise are κ̂11,PM , µ̂11,PE, µ̂11,PM , ê15,PE and q̂15,PM . By Eq. (23), we
can write the effective voltage coefficient as a function of volume fraction and
the normalized material properties of the PE and PM phases

αE,11 = αE,11(f ; Ĉ44,PE, Ĉ44,PM , κ̂11,PE, · · ·). (24)

As demonstrated by Fig. 3, there exists an optimal volume fraction fopt for
maximum ME voltage coefficients. We can formally write this optimal volume
and the corresponding maximum effective ME voltage coefficient as functions
of the above normalized properties of the PE and PM phases

fopt = fopt(Ĉ44,PE, Ĉ44,PM , κ̂11,PE, · · ·),
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Fig. 4. The contour plots of the maximum effective ME voltage coefficients α?
E,11

versus different material parameters for composite of PE fibers in a PM matrix. The
unit for ME voltage coefficient is 0.0306V/cmOe and the horizontal and vertical
axes represent: (a) normalized elastic constants Ĉ44,PE and Ĉ44,PM ; (b) normalized
piezoelectric coefficient of PE phase ê15,PE and normalized piezomagnetic coefficient
of PM phase q̂15,PM ; (c) normalized dielectric permittivities κ̂11,PE and κ̂11,PM ; (d)
normalized magnetic permeabilities µ̂11,PE and µ̂11,PM .

α?
E,11 = αE,11(fopt; Ĉ44,PE, Ĉ44,PM , κ̂11,PE, · · ·).

Below we numerically compute the maximum ME voltage coefficient α?
E,11 by

Eq. (23) and its dependence of the normalized material properties of PE and
PM phases. These results give important guidelines for practical designs of
ME composites of PE and PM materials.

Figure 4 shows the contours of the maximum ME voltage coefficients α?
E,11 of

PE fibers (over volume fraction f) in a PM matrix at the optimal fibrous vol-
ume fraction fopt, where the maximum ME voltage coefficients αE,11,BTO in CFO =
0.0306V/cmOe of BTO fibers in a CFO matrix is chosen as the unit for the
ME voltage coefficient α?

E,11 for ease of comparison. The optimal volume frac-
tions of PE phase fopt vary from 0.28 to 0.64, whose exact values can be easily
computed by numerically maximizing the effective ME voltage coefficient over
f ∈ [0, 1] (cf. Eq. (24)). In Fig. 4 (a) the horizontal and vertical axes represent
the normalized elastic constants of PE and PM phases in logarithmic scale,
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respectively. It is observed that the ME voltage coefficient increases when ei-
ther the fiber or matrix’s elastic constant decreases. Therefore, softer PM and
PE materials are preferred for improving the ME voltage coefficients of com-
posites of PE fibers in a PM matrix. Figure 4(b) shows the contours of the
maximum ME voltage coefficients α?

E,11 versus the piezoelectric and piezomag-
netic constants in linear scale. For a fixed piezoelectric coefficient e15, the ME
voltage coefficient increases monotonically as the piezomagnetic coefficient q15

increases. However, for a fixed normalized piezomagnetic coefficient q15 and as
the piezoelectric coefficient e15 increases, the ME voltage coefficient increases
first and decreases after certain optimal e15. Therefore, a large piezomagnetic
coefficient q15 but a nontrivial optimal piezoelectric coefficient e15 are preferred
for improving the ME voltage coefficients of composites of PE fibers in a PM
matrix. Figure 4(c) shows the contours of the maximum ME voltage coefficien-
t α?

E,11 versus the normalized electric permittivities of PE and PM phases in
logarithmic scale. We observe that smaller PE permittivity κ11,PE gives rise to
larger ME voltage coefficient. However, the PM permittivity κ11,PM does not
influence ME effect much. Figure 4(d) shows the contours of the maximum ME
voltage coefficient α?

E,11 versus the normalized magnetic permeabilities of the
PE and PM phases in logarithmic scale. We observe that increasing the PE’s
magnetic permeability largely enhances the ME voltage coefficient, and on the
contrary, increasing the PM’s magnetic permeability lowers the ME voltage
coefficient. Therefore, a large magnetic permeability of the PE phase and a
small magnetic permeability of the PM phase are preferred for improving the
ME voltage coefficient for composites of PE fibers in a PM matrix.

We now turn to the case of PM fibers (with isotropic shape matrix Q = I/2)
in a PE matrix. Figure 5 shows the contours of the maximum ME voltage
coefficients α?

E,11 at the optimal fibrous volume fraction fopt, where the maxi-
mum ME voltage coefficients αE,11,CFO in BTO = 0.0245V/cmOe of CFO fibers
in a BTO matrix is chosen as the unit for the ME voltage coefficient for ease of
comparison. The optimal volume fractions fopt of PM phase are also computed
by numerically maximizing the effective ME voltage coefficient over f ∈ [0, 1]
(cf. Eq. (24)). From Fig. 5(a) we observe that the elastic constant of the PE
phase has a much stronger influence on the ME voltage coefficient than that of
the PM phase. Again, soft PM and PE phases are preferred for improving the
ME voltage coefficient. We also notice that the optimal volume fraction of the
PM phase fopt is roughly a constant of 0.98 though the elastic constants of the
PM and PE phases change orders of magnitude. From Fig. 5(b) we observe
that the ME voltage coefficient increases monotonically as the piezomagnetic
coefficient q15 of the PM phase increases and there is an optimal piezoelectric
coefficient e15 of PE phase for maximum ME voltage coefficient of composites
of PM fibers in a PE matrix. We also notice that the optimal volume fraction
of the inclusion fopt is roughly a constant of 0.98. Figure 5(c) & (d) shows
that to improve the ME voltage coefficient of composites of PM fibers in a PE
matrix, we shall engineer the PM fibers and PE matrix such that the electric
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Fig. 5. The contour plots of the maximum effective ME voltage coefficients α?
E,11

versus different material parameters for composite of PM fibers in a PE matrix. The
unit for ME voltage coefficient is 0.0245V/cmOe and the horizontal and vertical
axes represent: (a) normalized elastic constants Ĉ44,PE and Ĉ44,PM ; (b) normalized
piezoelectric coefficient of PE phase ê15,PE and normalized piezomagnetic coefficient
of PM phase q̂15,PM ; (c) normalized dielectric permittivities κ̂11,PE and κ̂11,PM ; (d)
normalized magnetic permeabilities µ̂11,PE and µ̂11,PM .

permittivity κ11,PM of the PM phase is enhanced and the magnetic perme-
ability µ11,PM is reduced, and on the contrary, the electric permittivity κ11,PE

of the PE phase is reduced and the magnetic permeability µ11,PE is enhanced.
The optimal volume fraction fopt varies from 0.92 to 0.98 for cases shown in
Fig. 5(c) & (d).

Motivated by the above study, we study ME composites of P(VDF-TrFE)
and Terfenol-D(epoxy) (TD(epoxy)) since they have much lower elastic con-
stants, electric permittivity, and magnetic permeability. Further, a particu-
late ME composite made of P(VDF-TrFE) and TD was also studied by Nan
et al.(2001a,b) which shows that the flexible composite exhibits markedly
larger coupling effect. For P(VDF-TrFE) in a TD(epoxy) matrix, the max-
imum is attained at volume fraction f = 0.34 where ME voltage coefficient
αE,11 = 0.1051V/cmOe (Figure 6(a)). For TD(epoxy) in a P(VDF-TrFE) ma-
trix, the maximum occurs at the volume fraction f = 0.87 where the coupling
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Fig. 6. The predicted ME voltage coefficients. P(VDF-TrFE) is the fiber phase
and TD(epoxy) is the matrix phase for (a). TD(epoxy) is the fiber phase and
P(VDF-TrFE) is the matrix phase for (b).

effect αE,11 = 0.9221V/cmOe (Figure 6(b)). Both of them are around 3.5
times enhancement of the coupling coefficients compared to their BTO/CFO
counterparts.

5 Summary and Discussion

The coexistence of magnetic and electric ordering and their interaction in
magnetoelectric (ME) materials have stimulated considerable scientific and
technological interest in recent years for potential applications in actuators,
sensors and storage devices. By considering a simple model of periodic two-
phase composites of piezoelectric (PE) and piezomagnetic (PM) materials, we
derive a closed-form solution to the effective properties of the composite in
terms of material properties of the constituent phases and simple geometric
parameters: the volume fraction f of the fiber phase and the shape matrix
Q which characterizes the anisotropy of the microstructure. The predicted
effective properties are realizable by microstructures of periodic E-inclusions.

Based on this closed-form solution, we study the dependence of a particu-
lar material property of interest, the ME voltage coefficient, on the volume
fraction of the fiber phase and the material properties of the PE and PM
phases. In particular, we obtain the following design principles for ME fibrous
composites of PE and PM phases:

(1) There exists an optimal volume fraction for maximum ME voltage coeffi-
cient which can be obtained by maximizing Eq. (24) over volume fraction
f ∈ (0, 1). This is probably the most important conclusion of our study
since the volume fraction is the easiest controllable design parameters.
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(2) Softer materials are desirable for improving the ME voltage coefficient.
(3) For composites of PE fibers in a PM matrix and PM fibers in a PE matrix

(cf. Figs. 4-5), it is desirable to have larger piezomagnetic coefficient but
smaller magnetic permeability in the PM phase, smaller electric permit-
tivity but larger magnetic permeability in the PE phase. Further, there
exists an optimal value of the piezoelectric coefficient of the PE fibers for
maximum ME voltage coefficient.

(4) The dielectric permittivity of PM phase has a much stronger effect on
the ME voltage coefficient for composites of PM fibers in a PE matrix
than for composites of PE fibers in a PM matrix (cf. Figs. 4(c) and 5 (c))
and is preferably large.
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