
ARTICLE IN PRESS
Journal of the Mechanics and Physics of Solids

54 (2006) 951–974
0022-5096/$ -

doi:10.1016/j

�Correspo
E-mail ad
www.elsevier.com/locate/jmps
Magnetostrictive composites in the dilute limit

L.P. Liu�, R.D. James, P.H. Leo

Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA

Received 9 March 2005; received in revised form 21 November 2005; accepted 22 November 2005
Abstract

We calculate the effective properties of a magnetostrictive composite in the dilute limit. The

composite consists of well separated identical ellipsoidal particles of magnetostrictive material,

surrounded by an elastic matrix. The free energy of the magnetostrictive particles is computed using

the constrained theory of DeSimone and James [2002. A constrained theory of magnetoelasticity with

applications to magnetic shape memory materials. J. Mech. Phys. Solids 50, 283–320], where

application of an external field causes rearrangement of variants rather than rotation of the

magnetization or elastic strain in a variant. The free energy of the composite has an elastic energy

term associated with the deformation of the surrounding matrix and demagnetization terms. By

using results from the constrained theory and from the Eshelby inclusion problem in linear elasticity,

we show that the energy minimization problem for the composite can be cast as a quadratic

programming problem. The solution of the quadratic programming problem yields the effective

properties of Ni2MnGa and Terfenol-D composite systems. Numerical results show that the average

strain of the composite depends strongly on the particle shape, the applied stress, and the elastic

modulus of the matrix.

r 2005 Published by Elsevier Ltd.

Keywords: Constrained theory; Magnetostrictive composite; Eshelby problem
1. Introduction

Magnetostriction refers to the reversible deformation of a solid in response to an applied
magnetic field. Magnetostriction occurs in most ferromagnetic materials. For example,
see front matter r 2005 Published by Elsevier Ltd.
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pure cobalt, nickel or iron have a maximum shape change of around 100 microstrain
(Cullity, 1972), while the giant magnetostrictive alloy Terfenol-D has a magnetostriction of
about 2000 microstrain (Clark, 1992). More recently, ‘‘Ferromagnetic Shape Memory’’
(FSM) materials such as Ni2MnGa have been developed that can generate a
magnetostrictive strain up to 50 times that of Terfenol-D. These materials work by
coupling magnetic domains to martensite twin domains.
While Terfenol-D has been used in commercial applications, success of some of the

newer materials has been limited by the fact that they are often quite brittle. Also,
polycrystalline magnetostrictive materials usually have much lower magnetostrictive
strains than their single crystal counterparts. Both of these difficulties can be addressed by
developing magnetostrictive composites consisting of small, essentially single crystal
particles embedded in a soft matrix, see for example McKnight and Carman (2001),
McKnight (2002), and Pinkerton and Capehart (1997).
The main goal of this paper is to analyze the behavior of composites containing a dilute

mixture of magnetostrictive particles. We describe the behavior of the particles using the
constrained theory developed by DeSimone and James (2002). Constrained theory is
derived from micromagnetics, see Landau and Lifshitz (1935) and Brown (1963), and is
appropriate for magnetostrictive materials with high anisotropy and mobile variant
interfaces. Specifically, we assume that because of these features of the magnetostrictive
materials, the application of external fields causes only rearrangement of the variants
rather than rotation of magnetization or elastic strain within a variant. This assumption
greatly simplifies the energy minimization problem for an isolated ellipsoidal particle,
leading to a finite dimensional quadratic programming problem. In this case, the
constrained theory has been compared to experimental results, see e.g. Tickle et al. (1999),
Cui (2002), and James and Wuttig (1998). These comparisons show that the constrained
theory captures semi-quantitatively the main magnetostrictive behaviors of both FSM
materials and giant magnetostrictive materials with high anisotropy and mobile variant
interfaces.
The value of the constrained theory is that the final problem (a finite dimensional

quadratic programming problem) is drastically easier than the original infinite dimensional
variational problem. One can gain significant insight into the behavior of magnetostrictive
materials by examining the structure and solutions of this problem. However, these results
are restricted to ellipsoidal particles because the reduction to finite dimensions makes use
of the fact that ellipsoidal regions have the property that a uniformly magnetized ellipsoid
induces a uniform magnetic field inside the ellipsoid.
A second desirable feature of constrained theory is that it embodies what has been

conceived as ideal ferromagnetic shape memory, that is, high magnetic anisotropy and
mobile twin interfaces. (However, the constrained theory is equally valid for conventional
magnetostrictive materials with high anisotropy and mobile domain walls.) Thus, it can be
used to predict how the best materials of this type would behave, and it can set limitations
on response. Currently, efforts are underway to significantly increase magnetic anisotropy
in Fe3Pd via ordering. If it would also retain its high mobility in the ordered state, then its
behavior would be close to ideal. Even with the current materials, we believe our results
provide significant insight into what stiffness of matrix, particle shape and applied stress
can be used to enhance the field-induced strain in such a composite.
In this paper, we extend the results for an isolated magnetostrictive particle to the case of

a composite system where magnetostrictive particles are embedded in an elastic matrix.
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This is possible because the special place of ellipsoidal particles in micromagnetics extends
to linear elasticity. That is, it is well-known that in linear elasticity, a uniform eigenstrain
inside an ellipsoidal region in an infinite medium induces uniform stress inside the
ellipsoid, see Eshelby (1957). By using this result (Eshelby’s solution) and strategies similar
to those used by DeSimone and James (2002), we simplify the minimization problem for
the composite system to be a quadratic programming problem. This idea that Eshelby’s
results allow one to solve not only linear problems for composites, but also problems in
which the matrix is linear and the inclusion is nonlinear, goes back to Hill (1965); in simple
terms the idea is that, if the nonlinear material inside the inclusion is equilibrated (or
energy minimizing) under homogeneous conditions of stress and strain then, even though
the stress and strain may be nonlinearly related, a solution can still typically be found (say,
by the implicit function theorem). In the present case the inclusion is indeed nonlinear, but
there is also the presence of the nonlocal magnetostatic energy. However, once it is realized
that this energy also enjoys special properties for ellipsoids—namely, a minimizer of the
magnetostatic energy of an ellipsoidal inclusion over all magnetizations with given average
magnetization is constant—then Hill’s idea can be used.

There have been several recent papers describing the behavior of magnetoelastic
composites. Kankanala and Triantafyllidis (2004) have developed a macroscopic
continuum model for such composites based on both continuum balance laws and
variational methods. Borcea and Bruno (2001) introduced composite microstructure by
considering the interactions between two ferromagnetic particles to develop a second-order
(in volume fraction) model for composite properties. These works consider how
conventional magnetic forces between particles affect the composite, and do not consider
the magnetostrictive strain of the particle arising from configurational forces. Armstrong
(2000) considered such particles, though he considered particle straining to arise from the
rotation of magnetization and the associated strain inside a variant, in direct contrast to
our use of constrained theory. Our approach is also different from that of Herbst et al.
(1997), and Nan and Weng (1999), who assume a linear magneto-elastic constitutive
equations for the magnetostrictive particles and predict the effective magneto-elastic
constitutive equations of the composite by solving a mixture problem. The present theory
has no phenomenological parameters. The material parameters needed here are: the linear
elastic modulus tensor of the matrix, the saturation magnetization of one variant of
martensite, the transformation strain matrix and the variant structure of the magnetic
phase.

In Section 2, we review the constrained theory for an isolated magnetostrictive particle.
In Section 3 we outline how the constrained theory can be adapted for the composite
system and how the minimization problems can be reduced to quadratic programming
problems for ellipsoidal particles. In Section 4, we connect the average strain of the
composite system with the strain of the magnetostrictive particles and clarify some
technical problems concerning the external mechanical loading device. In Section 5, using
the theory presented in previous sections, we numerically evaluate the magnetostrictive
properties of dilute composites with Ni2MnGa and Terfenol-D inclusions.

The notation we use is as follows: The convention of summation over double indices is
used unless stated otherwise. We denote by a � b, a; b 2 Rn�m the usual inner product in the
Euclidean space Rn�m, i.e., in indices form, aipbip. A linear mapping R : Rn�m 7!Rn�m can
be identified with an element in Rn�m�n�m, i.e. Ra ¼ Ripjqajq 2 Rn�m 8a 2 Rn�m. The
mapping R�1 : Rn�m 7!Rn�m denotes the inverse mapping of R if the linear mapping R is
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invertible. There are cases that an element S 2 Rn�m�n�m is not an invertible mapping from
Rn�m to Rn�m, but is invertible when restricted to a subspace of Rn�m. By S�1 we mean the
inverse mapping of S restricted to this subspace of Rn�m. By

R
�Odx we mean 1

jOj

R
O dx, i.e.,

the average of the integrated function over O. We use function space notation such as
L2ðO;R3Þ,H1

0ðR
3;R3Þ, H1ðV ;R3Þ, see Rudin (1987) and Adams (1978) for details. While the

arguments given below are rigorous, our focus is on the physical implications of the
constrained theory and Eshelby’s solution, and the prediction of properties, so our
presentation can be read without a precise knowledge of these spaces.

2. The constrained theory for an isolated magnetostrictive particle

We use the large-body limit of micromagnetics to describe the behavior of the
magnetostrictive particles. Micromagnetics was first developed by Brown (1963), based on
earlier more physical ideas of Landau and Lifshitz (1935) and Lifshitz (1944), and the large
body limit of micromagnetics was derived by DeSimone (1993). In simple terms the
magnetic body is assumed to be large enough that the exchange energy can be neglected,
and one needs to study the properties of minimizing sequences, as the energy may not have
a minimizer. In this large body limit the free energy of an isolated single crystal
magnetostrictive particle under the application of an external magnetic field he and stress
Se is written as

EnðuðxÞ;mðxÞÞ ¼

Z
O
½FðE½u�ðxÞ;mðxÞÞ � he �mðxÞ � Se � E½u�ðxÞ�dx

þ
1

2g

Z
R3

jrxmðxÞj
2 dx, ð1Þ

where O is the reference configuration of the particle, ðuðxÞ;mðxÞÞ are the displacement and
magnetization defined on O, and E½u� ¼ 1

2
ðruþ ðruÞTÞ is the strain. Since the material is

ferromagnetic, the magnitude of the magnetization must be almost everywhere a constant,
the saturation magnetization, denoted by ms. The function FðE;mÞ : R3�3

sym � R3 7!R is the
anisotropy energy density, and reflects the fact that the crystal prefers certain
magnetization directions (easy axes) and the associated stress-free strains. The term
1
2g

R
R3 jrxmðxÞj

2 dx is the magnetostatic energy. The magnetic potential xmðxÞ, arising from
the magnetization of the particle itself, is determined by the Maxwell equation

divð�rxmðxÞ þ gmðxÞwOðxÞÞ ¼ 0 in R3, (2)

where g is a constant depending on the system of units, and wO : R
3 7!R, the characteristic

function of region O, takes values 1 inside O and 0 elsewhere. Finally, the term he �mðxÞ þ

Se � EðxÞ gives the potential energy density from the applied magnetic field and stress,
where both he 2 R3 and Se 2 R3�3

sym are assumed to be constant. At a fixed temperature
below the Curie temperature, the magnetoelastic properties of the particle are governed by
the minimization problem (see DeSimone, 1993)

min
ðu;mÞ 2An

EnðuðxÞ;mðxÞÞ, (3)

where the admissible space

An � fðu;mÞ 2 H1ðO;R3Þ � L2ðO;R3Þj jmðxÞj ¼ ms a:e: in Og. (4)
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We now consider the free energy (1) in the context of constrained theory. We define
the energy wells as pairs of strain-magnetization ðE;mÞ 2 R3�3

sym � R3 that minimize
the anisotropy energy density FðE;mÞ. Without loss of generality, one may assume the
minimum is zero. In general, there are an even and finite number of energy-wells due to
the underlying crystalline structure, see James and Wuttig (1998); James and Hane (2000).
Thus,

FðE;mÞX0; FðE;mÞ ¼ 0 () ðE;mÞ 2 K �
[n
i¼1

ðEi;miÞ, (5)

where K is the collection of all energy-wells. A variant refers to a local region inside the
material with strain-magnetization pair falling on exactly one of the energy-wells.
Therefore there are n variants, where n is the number of energy-wells.1

We are only interested in magnetostrictive materials with the following special features:
high anisotropy (magnetically and elastically hard) and pairwise compatible, mobile
variant interfaces. By high anisotropy, we mean

jFðE;mÞj
m2

s

b1 for a typical strain-magnetization pair ðE;mÞeK. (6)

Pairwise compatible interfaces are defined such that for any two different energy-wells
ðEj ;mjÞ; ðEl ;mlÞ 2 K, there exist a unit vector njl and a vector ajl such that

Ej � El ¼
1
2
ðajl � njl þ njl � ajlÞ

ðmj �mlÞ � njl ¼ 0

(
(no summation), (7)

where the first equation in (7) is the Hadamard jump condition and the second equation is
the magnetic compatibility condition. Therefore, an interface with normal njl , separating
the jth variant and lth variant, satisfies the required continuity of the displacement and is
also pole-free, i.e., does not by itself induce magnetostatic energy. These conditions are
satisfied among all the common giant magnetostrictive and ferromagnetic shape memory
materials. Finally if the interfaces are mobile, the use of a minimum energy principle for
the energy (1) is justified.

To exploit the consequences of these special features of the magnetostrictive material, a
constrained theory was proposed by DeSimone and James (2002). In this theory, one
introduces a single dimensionless scaling parameter e such that

eFðE;mÞ ¼ F1ðE;mÞ�m2
s ,

and rewrites the free energy (1) as

En

e ðu;mÞ ¼

Z
O

1

e
F1ðE½u�ðxÞ;mðxÞÞ � he �mðxÞ � Se � E½u�ðxÞ

� �
dx

þ
1

2g

Z
R3

jrxmðxÞj
2 dx. ð8Þ

From Eq. (6), we expect e is a very small positive number for highly anisotropic materials.
However, under a typical applied magnetic field of the order gms and moderate applied
1In our terminology pairs of wells of the form ðE;�mÞ are considered different variants.
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stress, the terms

1

jOj

Z
O
�he �mðxÞ � Se � E½u�ðxÞdxþ

1

2g

Z
R3

jrxmðxÞj
2 dx

� �
�m2

e 8ðu;mÞ 2An, (9)

where jOj is the volume of O. Thus, one can argue that the effective properties governed by
minimization problem (3) are well predicted by the asymptotic properties governed by
minimization problems minAnEn

e ðu;mÞ as e tends to 0. This leads to studying the G-limit of
the energy functionals En

e , see Dal Maso (1993). Very similar ideas have been employed by
Bhattacharya and Li (2001) to predict behaviors of ferroelectrics. In effect, DeSimone and
James (2002) have already proved the following theorem:

Theorem 2.1. Define the (relaxed) energy functional En

0 :A
n

0 7!R as

En

0ðu;mÞ �

Z
O
�he �mðxÞ � Se � E½u�ðxÞ½ �dxþ

1

2g

Z
R3

jrxmðxÞj
2 dx,

and the function space

An

0 � fðu;mÞ 2 H1ðO;R3Þ � L2ðO;R3Þ j ðE½u�ðxÞ;mðxÞÞ 2 CoðKÞ a:e: in Og,

where CoðKÞ 	 R3�3
sym � R3 denotes the convex hull of the energy-wells K

CoðKÞ � ðE;mÞ j ðE;mÞ ¼
Xn

i¼1

yiðEi;miÞ; 0pyip1;

(

Xn

i ¼ 1

yi ¼ 1; ðEi;miÞ 2 K 8i ¼ 1; . . . ; n

)
. ð10Þ

If the energy-wells in K are pairwise compatible, then we have convergence of infimums

lim inf
e! 0

inf
An

En

e ¼ inf
An

0

En

0,

and also convergence of minimizers. That is, if ðu0ðxÞ;m0ðxÞÞ 2An

0 is the unique minimizer of

En

0, then the low-energy sequence ðueðxÞ;meðxÞÞ 2An of En

e , defined as

En

e ðueðxÞ;meðxÞÞp inf
An

En

e þ e 8e40,

satisfies (as e! 0),

ðueðxÞ;meðxÞÞ*ðu0ðxÞ;m0ðxÞÞ 2An

0 weakly in H1ðO;R3Þ � L2ðO;R3Þ (11)

and

lim inf
e! 0

EnðueðxÞ;meðxÞÞ ¼ En

0ðu0ðxÞ;m0ðxÞÞ ¼ inf
ðu;mÞ 2An

0

En

0ðu;mÞ. (12)

From Eqs. (11) to (12), we conclude that the (relaxed) minimization problem

min
ðu;mÞ 2An

0

En

0ðuðxÞ;mðxÞÞ (13)

can effectively predict the properties, such as local average strain and local average
magnetization, of an isolated single-crystal magnetostrictive particle having high
anisotropy energy and mobile variant interfaces.
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3. Magnetostrictive composites in the dilute limit

3.1. The constrained theory for the composite system

The composite under consideration consists of well separated identical magnetostrictive
particles surrounded by an elastic matrix. It is assumed that the matrix is magnetically
transparent and obeys linear elasticity, with elasticity tensor C, and that the
magnetostrictive material has high anisotropy energy and mobile variant interfaces as
described in the last section. Note that the anisotropy energy includes the elastic energy of
the inclusion, so the assumption that the magnetostrictive material has high anisotropy
energy implies that the matrix should be much softer than a single variant of the
magnetostrictive phase. In the dilute limit, the magnetostrictive particles inside the
composite are far apart and hence the magnetic and elastic interactions between different
particles are negligible, see Christensen (1979). The physical idea here is that each particle
has a certain ‘‘sphere of influence’’ whose properties are substantially unaffected by the
other particles. Quantities like the strain of the composite are calculated as averages over
this sphere of influence, and, of course, this average strain goes to zero (if there is no long
range stress) as this sphere of influence gets larger and larger. However, the average strain
times the volume of the sphere of influence tends to a definite quantity, which has the
interpretation as the first approximation to the average strain in a small-volume-fraction
expansion; and this is what is plotted in the results. These ideas can be made rigorous.
Using these ideas, it is appropriate to model the composite system by a single
magnetostrictive inclusion embedded in an infinite linear elastic matrix, see Fig. 1.

Let O be the region occupied by the inclusion of magnetostrictive material, ðuðxÞ;mðxÞÞ
be the displacement and magnetization defined on R3 and O, respectively. Further, it is
assumed that the potential energy due to an external mechanical loading device can be
written as

�

Z
O
Se � E½u�ðxÞdx, (14)

where Se 2 R3�3
sym is constant. Note that the integral in (14) is only over the inclusion; in the

next section we give the requirements on the loading device such that it can be described by
Fig. 1. Modelling a magnetostrictive composite system in the dilute limit.
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an ‘‘effective’’ stress Se as in Eq. (14) and we give a formula that relates Se to the actual
applied loads. Thus, under the application of the uniform magnetic field he and this
loading device, the free energy of this composite model in the constrained theory can be
written as

E0ðuðxÞ;mðxÞÞ ¼

Z
R3

1
2
ð1� wOÞru � Cruþ

1

2g
jrxmj

2

� �
dx

�

Z
O
ðSe � E½u� þ he �mÞdx, ð15Þ

and properties such as local average strain and local average magnetization are well
predicted by the (relaxed) minimization problem

min
ðu;mÞ 2A0

E0ðuðxÞ;mðxÞÞ, (16)

where the function space A0 is defined by

A0 � fðu;mÞ 2 H1
0ðR

3;R3Þ � L2ðO;R3Þ j ðE½u�ðxÞ;mðxÞÞ 2 CoðKÞ a:e: in Og. (17)

Note that the condition u 2 H1
0ðR

3;R3Þ means
R
R3 ½juj

2 þ jruj2�dxoþ1, and so implies
that uðxÞ and ruðxÞ decay faster than 1=jxj3=2 as jxj ! þ1.

3.2. Ellipsoidal inclusions

The minimization problem (16), like the minimization problem (3), can be further
simplified if the inclusion O is an ellipsoid. To see this, we compare the free energy of a
given state ðuðxÞ;mðxÞÞ 2A0 with the state ðūðxÞ; m̄ðxÞÞ 2A0 defined by

divðCrūðxÞÞ ¼ 0 8x 2 R3nO

ūðxÞ ¼ F0x 8x 2 O

(
and m̄ðxÞ ¼ wOðxÞm

0, (18)

where F0 ¼
R
�OruðtÞdt and m0 ¼

R
�OmðtÞdt. It is clear that ðūðxÞ; m̄ðxÞÞ are well-defined

since the equations used to define ūðxÞ have a unique solution in the space H1
0ðR

3;R3Þ, see
Evans (1998, p. 293). It is also easy to verify that the linear term in E0, i.e., the last integral
in Eq. (15) is the same for the states ðuðxÞ;mðxÞÞ and ðūðxÞ; m̄ðxÞÞ. It has been shown in
DeSimone and James (2002) that a nonuniform magnetization on an ellipsoidal region
induces higher magnetostatic energy than the uniform magnetization with the same
average. That is, we have the following inequality if O is an ellipsoidZ

R3

jrxmðxÞj
2 dxX

Z
R3

jrxm̄ðxÞj
2 dx ¼ jOjgm0 �Dm0, (19)

where xm̄ðxÞ is determined by Eq. (2) with mðxÞ replaced by m̄ðxÞ, and the demagnetization

matrix D depends only the shape of the ellipsoid O (demagnetization matrices are
tabulated). Further, we can show thatZ

R3

ð1� wOÞruðxÞ � CruðxÞdxX
Z
R3

ð1� wOÞrūðxÞ � CrūðxÞdx

¼ jOjF0 � ðR�1 � CÞF0 ð20Þ
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by noticing that the surface traction on qOþ determined by Eq. (18) can be expressed as
(see the Appendix)

ðCrūðxÞÞn ¼ ððC� R�1ÞF0Þn 8x 2 qOþ (21)

for an ellipsoidal region O, where n is the outward normal on qO, qOþ means the limit
approached from the outside of O, and R 2 R3�3�3�3 depends on the ellipsoidal region O
and the elasticity tensor C. See the Appendix for the explicit form of the tensor R and its
relation to the classical Eshelby tensor. The proof of inequality (20) is as follows:

From the divergence theorem and Eq. (18), we haveZ
R3nO
rv � Crūdx ¼ �

Z
qOþ

n� v � Crūdx 8v 2 H1
0ðR

3;R3Þ. (22)

Thus,Z
R3nO
ru � Cru dx ¼

Z
R3nO
½rū � Crūþ 2rū � Crðu� ūÞ þ rðu� ūÞ � Crðu� ūÞ�dx

¼

Z
R3nO
rū � Crūdxþ

Z
R3nO
rðu� ūÞ � Crðu� ūÞdx

� 2

Z
qOþ

n� ðu� ūÞ � Crūdx.

Since O is an ellipsoid, from Eq. (21) and definition (18) of ū, we haveZ
qOþ

n� ðu� ūÞ � Crūdx ¼

Z
qOþ

n� ðu� ūÞ � ðC� R�1ÞF0 dx

¼

Z
qOþ

n� ðu� ūÞdx

� �
� ðC� R�1ÞF0 ¼ 0,

and hence inequality (20) follows from the positive-definiteness of C.
We conclude that the minimizer of the minimization problem (16) must be of the form

(18) for an ellipsoidal region O. It is clear that for these states the energy E0 defined in (15)
is completely determined by the average deformation F0 and average magnetization m0,
i.e.,

E0ðūðxÞ; m̄ðxÞÞ ¼ jOjE%

0 ðF
0;m0Þ,

where from Eqs. (19) to (20),

E%

0 ðF;mÞ �
1
2F � ðR

�1 � CÞFþ 1
2m �Dm� Se � F� he �m. (23)

In the Appendix, we show that the function E%

0 can be rewritten as (see Eq. (57))

E%

0 ðF;mÞ ¼ E%

0EðE;mÞ þ E%

0W ðWÞ (24)

where E ¼ 1
2
ðFþ FTÞ is symmetric,W ¼ F� RCS�1E is skew-symmetric, and S 2 R3�3�3�3

is the Eshelby tensor, see Eshelby (1957) and Mura (1987). Also the functions E%

0E and E%

0W

are

E%

0EðE;mÞ ¼
1
2
E � ðCS�1 � CÞEþ 1

2
m �Dm� Se � E� he �m,

E%

0W ðWÞ ¼
1
2
W � R�1W,

respectively.
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Let ðF%;m%Þ be the corresponding average deformation and magnetization of the
minimizer of the minimization problem (16), i.e.,

jOjE%

0 ðF
%;m%Þ ¼ E0ðū

%ðxÞ; m̄%ðxÞÞ ¼ min
ðu;mÞ 2A0

E0ðuðxÞ;mðxÞÞ,

then from Eqs. (16) to (17), we have

E%

0 ðF
%;m%Þ ¼ min

ðE;mÞ 2 CoðKÞ
E%

0 ðF;mÞ. (25)

From Eq. (20) one knows R�1 � C is positive-definite. It is also easy to verify that the
admissible space for ðF;mÞ is convex with finite dimensions. Thus the minimization
problem (25) is a positive-definite quadratic programming problem and has a unique
minimizer ðF%;m%Þ. Further, from Eq. (24) and positive-definiteness of R�1, one can
rewrite the minimization problem (25) as

E%

0 ðF
%;m%Þ ¼ min

ðE;mÞ 2 CoðKÞ
E%

0EðE;mÞ þ min
W 2 R3�3

skew

E%

0W ðWÞ

" #

¼ min
ðE;mÞ 2 CoðKÞ

E%

0EðE;mÞ. ð26Þ

In terms of volume fractions Y of energy-wells, the quadratic programming problem
(26) can be written as

QðY%Þ ¼ min
Y 2 F

QðYÞ � 1
2
Y � AY� b �Y

� �
; ð27Þ

where Y ¼ ðy1; . . . ; ynÞ 2 R
n are the volume fractions of the n energy-wells in K with

F ¼ Y
Xn

i ¼ 1

yi ¼ 1; yi 2 ½0; 1� 8i ¼ 1; . . . ; n

�����
( )

.

Also A and b, a constant n� n matrix and a 1� n vector, are given by

A ¼ ðAijÞ ¼ ðmi �Dmj þ Ei � ðCS
�1
� CÞEjÞ; i; j ¼ 1; . . . ; n;

b ¼ ðbiÞ ¼ ðhe �mi þ Se � EiÞ; i ¼ 1; . . . ; n;

(
(28)

where ðEi;miÞ 2 K 8i ¼ 1; . . . ; n are the energy-wells. Clearly, ðF%;m%Þ is related to Y% by
(see Eq. (26) and the identity W ¼ F� RCS�1E)

ðE%;m%Þ ¼
Xn

i ¼ 1

y%

i ðEi;miÞ and F% ¼ RCS�1E%. (29)

In summary, for the composite system under consideration, the average strain and
magnetization inside the magnetostrictive inclusion are well predicted by the quadratic
programming problem (26) under the assumptions: (1) the magnetostrictive material has
the special features, i.e., high anisotropy and mobile variant interfaces, as in the original
constrained theory; (2) the matrix obeys linear elasticity, is magnetically transparent, and is
much softer than each magnetostrictive variant; (3) the inclusion region O is an ellipsoid.
To understand better the relative importance of the various terms of the energy, it is

useful to develop some simple bounds. A lower bound on the energy is obtained by
neglecting the magnetostatic energy, while an upper bound is obtained by restricting the
strain and magnetization to be uniform on the inclusion. That is,

min
ðu;mÞ 2A0

ElðuðxÞ;mðxÞÞp min
ðu;mÞ 2A0

E0ðuðxÞ;mðxÞÞp min
ðu;mÞ 2Au

E0ðuðxÞ;mðxÞÞ, (30)
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where

Elðu;mÞ �

Z
O
½�he �mðxÞ � Se � E½u�ðxÞ�dxþ

Z
R3

1
2
ð1� wOÞru � Crudx,

and the function space

Au � fðu;mÞ 2A0 j ðE½u�ðxÞ;mðxÞÞ are uniform inside Og.

In the case of an ellipsoidal inclusion, the upper bound matches the exact energy, because
of the special properties of ellipsoids used throughout this paper.

The lower bound is examined in two interesting cases in Fig. 3. On the left of Fig. 3, we
show the predicted response of Ni2MnGa compared to the lower bound. It is seen that the
presence of magnetostatic energy has a moderate effect on the transition fields. For
Terfenol-D the effect of magnetostatic energy is much more dramatic; in its absence the
fields at transition drop to a small fraction of their predicted values. The shape of the
response curve of the lower bound is similar to the predicted response, but on the scale of
Fig. 3 it appears to collapse to a horizontal line at the saturation strain with a single point
at he ¼ 0 and zero strain.

4. Magnetoelastic properties of the composite system in the dilute limit

We now calculate the average strain of the composite system in terms of the average
strain of the magnetostrictive inclusion, which is predicted by the quadratic programming
problem (26). Consider a composite specimen, let V be the region occupied by the whole
composite specimen, O 	 V be the regions occupied by the magnetostrictive particles. In
the dilute limit, interactions between different particles are negligible. Thus, we may
assume there is only one magnetostrictive particle embedded in V , as sketched in Fig. 2. A
mechanical loading device can be modelled by some surface traction tðxÞ : qV 7!R3. Then,
the displacement restricted to the matrix satisfies the following equations:

div½CruðxÞ� ¼ 0; x 2 VnO;

ðCruðxÞÞnðxÞ ¼ tðxÞ; x 2 qV :

(
(31)

The displacement restricted to the inclusion, determined by the minimization problem (26)
in the dilute limit and for ellipsoidal O, can be written as

uðxÞ ¼ F%x x 2 O.
Fig. 2. A composite specimen under the application of a dead load.
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Our first task is to obtain a simple decomposition for the overall strain of the composite.
We first observe that there is a part of the overall strain that is a simple linear
transformation of E% ¼ 1

2
ðF% þ ðF%Þ

T
Þ. To see this, we calculate the overall strain relative

to a certain reference state u0:

EC ¼
1

jV j

Z
V

E½u� u0�ðxÞdx.

Here, the reference displacement u0 can be chosen to be the displacement, under the
influence of the same loads, that would be present if the inclusion were rigidified:

div½Cru0ðxÞ� ¼ 0; x 2 VnO;

u0ðxÞ ¼ 0; x 2 O;

ðCru0ðxÞÞnðxÞ ¼ tðxÞ; x 2 qV :

8>><
>>: ð32Þ

The displacement u0 is well-defined since the above equations have a unique solution in
H1ðV ;R3Þ. By the divergence theorem, we have

EC ¼
1

jV j
C�1

Z
VnO

Crðu� u0Þdxþ jOjE%

� �

¼
1

jV j
C�1

Z
qðVnOÞ

ððCrðu� u0ÞÞnÞ � xdxþ jOjE%

� �

¼
1

jV j
C�1

Z
qOþ
ðððR�1 � CÞF%ÞnÞ � xdxþ jOjE%

� �
¼ f ðC�1R�1ÞF% ¼ fS�1E%, ð33Þ

where f ¼ jOj=jV j is the volume fraction. In the above calculations, the last equality
follows from Eq. (29). For the third equality, we write

ðCrðu� u0ÞÞn ¼ ððC� R�1ÞF%Þn 8x 2 qOþ. (34)

This is reasonable since u� u0 satisfies

div½CrðuðxÞ � u0ðxÞÞ� ¼ 0; x 2 VnO;

uðxÞ � u0ðxÞ ¼ F%x; x 2 O;

ðCrðu� u0ÞÞnðxÞ ¼ 0; x 2 qV :

8><
>: (35)

Since the volume fraction f51, one may argue that the surface traction on qOþ would not
be affected by replacing V by R3 in Eq. (35), i.e., the surface traction on qOþ determined
by Eq. (35) is the same as that determined by the elasticity problem in Eq. (18) with F0

replaced by F%. Therefore, Eq. (34) follows from Eq. (52) in the Appendix.
To get the total strain, we add the quantity ð1=jV jÞ

R
V
E½u0�dx to fS�1E%. The first of

these is independent of the strain in the inclusion, while the second is independent of the
applied loads.
We next show that for ellipsoidal inclusions, the loading device energy from an external

stress can be written in the form of (14) with Se constant. We assume dead loading, so the
surface traction tðxÞ is independent of the deformation of the specimen. For a displacement
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uðxÞ, the potential energy due to this loading device is

Epðt; uÞ ¼ �

Z
qV

tðxÞ � uðxÞdx. (36)

In fact any admissible displacement field u necessarily satisfies Eq. (31). Since only the
potential energy difference between displacements is important, we may again choose the
reference displacement u0 as defined by Eq. (32). The potential energy difference between u

and u0 can be written as

Epðt; u� u0Þ ¼ �

Z
qV

tðxÞ � ðuðxÞ � u0ðxÞÞdx ¼ �

Z
qV

ððCru0ÞnÞ � ðu� u0Þdx

¼ �

Z
qOþ
ððCru0ÞnÞ � ðu� u0Þdx�

Z
VnO

Cru0 � rðu� u0Þdx,

where the divergence theorem has been used. Further, for the given u0, we define a
(symmetric) stress Se : O 7!R3�3

sym such that2

divSeðxÞ ¼ 0; x 2 O;

ðSeðxÞ � Cru0ÞnðxÞ ¼ 0; x 2 qOþ;

(
(37)

Then, by the divergence theorem, we haveZ
qOþ
ððCru0ÞnÞ � ðu� u0Þdx ¼

Z
O
SeðxÞ � E½u�ðxÞdx,Z

VnO
Cru0 � rðu� u0Þdx ¼

Z
qðVnOÞ

ððCrðu� u0ÞÞnÞ � u0 dx ¼ 0.

Thus,

Epðt; u� u0Þ ¼ �

Z
O
SeðxÞ � E½u�ðxÞdx. (38)

In particular, if O is an ellipsoidal region and

tðxÞ ¼ SanðxÞ x 2 qV , (39)

where Sa 2 R3�3
sym, then from Eqs. (32) and the identity CRCS�1 ¼ C (see Eq. (56)), we

know that u00 ¼ u0 � RCEnx satisfies

div½Cru00ðxÞ� ¼ 0; x 2 VnO;

u00ðxÞ ¼ �RCE
nx; 8x 2 O;

ðCru00ðxÞÞnðxÞ ¼ 0; x 2 qV ;

8><
>: (40)

where En ¼ S�1C�1Sa. As before, we argue that in the dilute limit, the surface traction on
qOþ determined by Eq. (40) is the same as that determined by the elasticity equation in (18)
with F0 replaced by �RCEn. Therefore, from Eq. (52) we have

ðCru00ðxÞÞn ¼ �ðCRCE
n
� CEn

Þn) ðCru0ðxÞÞn ¼ ðCE
n
Þn 8x 2 qOþ.
2This can always be done, by for example solving an elasticity problem. Since the modulus for this elasticity

problem can be an arbitrary positive-definite tensor, the stress so defined is not unique, but makes no difference

for the integral (38).
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From definition (37) of Se, we may choose

SeðxÞ ¼ CS�1C�1Sa; 8x 2 O, (41)

which indeed has the form (14).
In summary, under the application of surface traction of the form (39), the effective

applied stress Se in the free energy of the composite system (cf. Eq. (15)) is given by
Eq. (41). The average composite strain is ð1=jV jÞ

R
V
E½u0�dxþ fS�1E% and u0 is

independent of E%. The strain inside the magnetostrictive particles E% is constant and is
governed by the minimization problem (27).

5. Application to Ni2MnGa and terfenol-D composites

We consider two different magnetostrictive materials: Ni2MnGa and Terfenol-D. The
energy-wells of Ni2MnGa are given by

E1 ¼

�0:048 0 0

0 0:013 0

0 0 0:013

2
64

3
75 �m1 ¼ �msð1; 0; 0Þ,

E2 ¼

0:013 0 0

0 �0:048 0

0 0 0:013

2
64

3
75 �m2 ¼ �msð0; 1; 0Þ,

E3 ¼

0:013 0 0

0 0:013 0

0 0 �0:048

2
64

3
75 �m3 ¼ �msð0; 0; 1Þ,

where strains are measured with respect to the undistorted austenite, and the cubic axes of
the austenite crystal is taken as the coordinate system. Also, ms ¼ 602 emu=cm3 is the
saturation magnetization of Ni2MnGa, see Tickle and James (1999). Note that the
constant g ¼ 4p in cgs system of units in which we work here, see Jackson (1999).
With respect to the undistorted crystalline lattice, the energy wells for Terfenol-D are

given by the following formulae (no summation)

ðEi;�miÞ ¼
3
2l111ðei � ei �

1
31Þ; �m0sei

� �
i ¼ 1; . . . ; 4,

where 1 2 R3�3 is the identity matrix and the unit vector ei can be chosen from

e1 ¼
1ffiffi
3
p ð1; 1; 1Þ; e2 ¼

1ffiffi
3
p ð�1; 1; 1Þ; e3 ¼

1ffiffi
3
p ð1;�1; 1Þ; and e4 ¼

1ffiffi
3
p ð1; 1;�1Þ.

Also, l111 ¼ 2� 10�3, m0s ¼ 800 emu=cm3, see DeSimone and James (2002).
One can easily check that the energy-wells of Ni2MnGa and Terfenol-D satisfy the

pairwise compatibility conditions (7). At the same time, Ni2MnGa and apparently also
Terfenol-D have high anisotropy energy, and both clearly have mobile interfaces. Thus, it
is safe to use the constrained theory to predict their behaviors even though the mechanism
of producing strains is different for Ni2MnGa and Terfenol-D, i.e., twin boundary motion
versus domain wall motion.
We assume that the elasticity tensor C of the matrix is isotropic and so can be described

by a Poisson’s ratio n and a Young’s modulus E. In this case, the demagnetization matrix
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D and the Eshelby tensor S are well known and general formulae are presented in the
Appendix. See also Kellogg (1929) and Mura (1987).

We assume that the direction of the applied magnetic field is along one of the easy axes
of the crystal, say, e1, and that the applied stress Sa is uniaxial stress along the same
direction. (Note e1 ¼ ð1 0 0Þ for Ni2MnGa and ð1 1 1Þ for Terfenol-D.) Therefore, we have

he ¼ hee1 and Sa ¼ Sae1 � e1,

where he and Sa are the magnitude of the applied magnetic field and stress, respectively.
We will also assume that the inclusion is an axisymmetric ellipsoid, with the axis of
rotation along with the same easy axis e1.

In the following, we consider the composite strain along e1. We imagine varying the
applied magnetic field he at fixed applied stress Sa. In this case, we are interested in the
change in strain owing to the applied magnetic field. The composite strain is defined by

�e1 ¼ f e1 � S
�1ðE% � E%

0 Þe1, (42)

where f is the volume fraction of the magnetostrictive material, E% is the minimizer of
problem (27) corresponding to a certain he, and E%

0 is the minimizer corresponding to
he ¼ 0. With reference to the discussion of Section 4 we note that (42) is also equal to the
total strain at he minus its value at he ¼ 0; that is, it is independent of the reference strain
introduced in Eq. (33). This is the strain of interest in applications.

For any given volume fraction f , Young’s modulus E, Poisson’s ratio v, applied stress
Sa, applied magnetic field he, and shape of the axisymmetric ellipsoid, we calculate the
matrix A and vector b from Eq. (28). The quadratic programming problem (27) can be
easily solved numerically, and by Eq. (42) the composite strain can be calculated.
Therefore, one can formally write the composite strain �e1 as a function of f , E, n, e, Sa

and he,

�e1 ¼ �e1 ðf ;E; n; e;Sa; heÞ; ð43Þ

where e ¼ b=a is the aspect ratio the axisymmetric ellipsoidal inclusion, a is the half-length
along e1 and b is the half length transverse to e1. In the following, we investigate the
behavior of Eq. (43) as a function of all the parameters except the volume fraction f. Since
the composite strain is proportional to the volume fraction, we set it to be 0:1 in all
calculations.

Fig. 3 shows plots of composite strain versus the applied magnetic field he for both
Ni2MnGa and Terfenol-D. In both cases, E ¼ 0:1GPa, n ¼ 0:4, e ¼ 1, and Sa ¼ 0. The
‘‘n’’ curves are computed for the minimization problem (16) and the ‘‘þ’’ curve is
computed for the minimization problem that defines the lower bound in Eq. (30); see also
the remarks at the end of Section 3. The curves are symmetric about he ¼ 0 since the
preferred magnetization can be either positive or negative. Consider he40. For small he,
the composite strain stays at zero. In this region variants with magnetization directed at
�e1 vanish at the expense of those with magnetization directed at þ e1, with no change in
macroscopic strain. Once these antiparallel variants are removed, the other disfavored
variants such as ðE2;�m2Þ are gradually removed at the expense of the variant ðE1;m1Þ,
and so the composite strain changes linearly with the field. This continues until saturation,
when the magnetostrictive particles are all the variant ðE1;m1Þ. The absolute value of the
largest composite strain is around 9:1� 10�3 for Ni2MnGa and 1:4� 10�3 for Terfenol-D.
Note that the composite strain for Ni2MnGa is negative since the variant ðE1;m1Þ has a
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Fig. 3. Composite strain versus applied magnetic field he. The curves are computed for Ni2MnGa and Terfenol-D

with f ¼ 0:1, e ¼ 1, E ¼ 0:1GPa, n ¼ 0:4, and Sa ¼ 0. The ‘‘n’’ curves are computed for the minimization

problem (16) and the ‘‘þ’’ curve is computed for the minimization problem that defines the lower bound in

Eq. (30). Note that on the scale of the Terfenol-D curve, the ‘‘þ’’ curve appears to collapse to a horizontal line at

the saturation strain with a single point at he ¼ 0 and zero strain.
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negative transformation strain �0:048 associated with e1 ¼ ð1 0 0Þ. In contrast in Terfenol-
D the preferred variant for e1 ¼ ð1 1 1Þ has a positive transformation strain along e1 and so
the composite strain is also positive.
From Fig. 3, the largest value of strain achieved for Ni2MnGa is about �9:1� 10�3. It is

interesting to compare this to the strains that can be achieved by some simple composite
geometries. For example, consider a lamellar composite where the magnetoelastic particle
is a plate with normal along the direction of applied field. In this case the maximum
composite strain, assuming no initial bias, is the volume fraction times the variant strain,
i.e., �4:8� 10�3, with absolute value smaller than �9:1� 10�3. Of course, higher strains
can be achieved by aligning the long axes of plate- or needle-like particles along the applied
field; in this case the full strain �4:8� 10�2 of the particle can be achieved by the
composite if the applied field is large enough.
We consider next the effect of the aspect ratio e on composite behavior. Note that

because a is the half length of the axis of rotation, logðeÞ40 corresponds to a disk-like
ellipsoid (an oblate ellipsoid), logðeÞ ¼ 0 is a sphere and logðeÞo0 corresponds to a needle-
like ellipsoid (a prolate ellipsoid). The parameters E ¼ 0:1GPa, n ¼ 0:4, he ¼ 4000Oe, and
Sa ¼ 0. Fig. 4 shows the composite strain plotted against the logarithm of the aspect ratio e

for Ni2MnGa. We find that prolate ellipsoids and spheres give good composite strain,
while oblate spheroids give poor composite strain. The optimal shape for maximum strain
is a prolate ellipsoid with e 
 0:8. We note that the specific values depend on the
magnitude of the external fields in an inherently nonlinear way. Also, we note that the
composite strain in the dilute limit depends on both the particle strain and the strain of the
surrounding matrix as generated through the Eshelby tensor. Thus, while isolated infinite
rods have the largest strain for a given applied field, they are not effective at generating
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strain in the matrix. For all cases we have considered, the strain is fairly insensitive to the
shape for all rod-shaped inclusions. In contrast, when the inclusion shape becomes disk-
like, the strain rapidly approaches zero. This is because for a disk, the Eshelby tensor S

makes Aij in (28) extremely large, and so the energy of deforming the inclusion becomes
prohibitively large.

We consider next the effects of a tensile applied stress Sa for Ni2MnGa. We choose a
tensile stress so that in the absence of a magnetic field, variants ðE2;�m2Þ and ðE3;�m3Þ

are favored over variants ðE1;�m1Þ. A magnetic field he ¼ 4000Oe is then applied, which
favors variants ðE1;m1Þ over the others. Three different shapes of inclusion are considered,
corresponding to the aspect ratio e ¼ 0:01; 1; 100. Fig. 5 shows that if the applied stress is
too small (approximately o0:05MPa), it has little effect on the final strain at
he ¼ 4000Oe. On the other hand, when the applied stress gets too large (approximately
40:1MPa for needle-like inclusion, 40:5MPa for disk-like inclusion, and 411MPa for
spherical inclusion), the applied stress prohibits any deformation of the composite. At
intermediate values the applied stress can lead to larger strain for disk-like and spherical
inclusions. There exists some ‘‘optimal’’ value where we have a peak (absolute value) of
strain. These conclusions hold for different magnetic field strengths, though the whole plot
is shifted to the right (left) for larger (smaller) applied magnetic field.

We next consider the role of the elastic modulus of the matrix. Fig. 6 shows plots of
strain versus the logarithm of Young’s modulus for both Ni2MnGa and Terfenol-D. The
change of Young’s modulus has little effect on the composite strain below a certain value
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of about 50MPa for Ni2MnGa and about 5GPa for Terfenol-D. This low modulus regime
corresponds to where the elastic energy contribution is negligible compared to the
magneto-static energy. Once the Young’s modulus is large enough, the composite strain
drops rapidly to zero, at which point the constraint of the matrix completely prevents
deformation of the magnetostrictive particles under the fixed magnetic field he ¼ 4000Oe.
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For the example shown in Fig. 6, this completely constrained case occurs when the
modulus reaches about 1GPa for Ni2MnGa and about 100GPa for Terfenol-D. Finally,
we note that the Poisson’s ratio of the matrix has little effect on the elastic energy of the
matrix, and hence little effect on the magneto-elastic properties of the composite.

The results from Fig. 6 show that in order to obtain a composite with good magneto-
elastic properties, the Young’s modulus of the matrix cannot be too high. On the other
hand, if the Young’s modulus is too low, the composite would not be effective in force
actuation. One possible criterion for force actuation is the elastic energy stored in the
matrix. Fig. 7 shows the elastic energy versus the Young’s modulus of the matrix for
differently shaped Ni2MnGa particles. We see that there is a clear maximum in the elastic
energy. For values of modulus below this maximizer, the composite strain is essentially
saturated and so the elastic energy increases with increasing Young’s modulus. However
when the matrix becomes too stiff, the composite strain drops as in Fig. 6, and hence so
does the elastic energy. The value of the maximum stored energy, and the corresponding
Young’s modulus, depends on the shape of the inclusion: for spherical and needle-like
inclusions the ‘‘optimal’’ modulus is about 0:1GPa, while for disk-like inclusions, the
‘‘optimal’’ modulus is about two orders of magnitude lower. This result for disk-like
inclusions arises because the Eshelby tensor for oblate ellipsoids gets very large. The values
of the maximum energy are consistent with Fig. 4: at a Young’s modulus of 0:1GPa, disk-
like inclusions have the lowest value of strain, while spheres and needle-like spheroids have
similar, higher, values of strain. The corresponding situation for composite with spherical
Terfenol-D inclusions is shown in Fig. 8, and compared with Ni2MnGa. We see very
similar behavior to the Ni2MnGa case, except that the value of the optimal modulus is
around two orders higher. This is consistent with Fig. 6 and the fact that the strains in the
energy-wells of Terfenol-D are much smaller than in Ni2MnGa.
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6. Summary

We have considered the problem of predicting the properties of magnetostrictive
composites in the dilute limit. We show that the basic variational principle for the
composite system (cf. Eq. (16)) can be reduced to a quadratic programming problem by
using the constrained theory of magnetostriction together with the special properties of
ellipsoids in both magnetics and elasticity. It should be noted that even with these
simplifications, the theory we present is nonlinear and nonlocal.
The solutions to the quadratic programming problem yield valuable information about

the design of a magnetostrictive composite. In practice, the parameters we can control are
the elastic modulus of the matrix, the shape (at least to some degree) of the FSM particles,
and the directions and magnitudes of the applied magnetic field and mechanical load. Our
calculations suggest one should choose a matrix with an elastic modulus of about 0.1GPa
for Ni2MnGa particles, and around 10GPa for Terfenol-D particles. Moreover, one
should use spherical or rod-like particles, where the axis of rotation is one of the easy axes
of the crystal. The magnetic field should be applied along this same direction, while a
biasing stress should be aligned so that it disfavors the variants favored by the magnetic
field.

Appendix A. Special properties of ellipsoids

In this appendix, we show that the linear elasticity problem defined in Eq. (18) can be
regarded as a type Eshelby inclusion problem. Eshelby (1957) considered the following
linear elasticity problem

div½Cð�ruðxÞ þ EnwOðxÞÞ� ¼ 0; 8x 2 R3. (44)
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He proved that for an ellipsoidal region O, the solution of the above equation is a linear
function, i.e., the actual strain E½u� is uniform inside O. Further the actual strain E½u� inside
O is related to the eigenstrain En by

E½u�ðxÞ ¼ SEn; 8x 2 O, (45)

where S 2 R3�3�3�3 is called the Eshelby tensor. The Eshelby tensor depends on the shape
of the ellipsoid and the elastic modulus C, and has the following symmetries:

Sijkl ¼ Sjikl ¼ Sijlk.

In fact Eshelby (1957) solved a larger class of inclusion problems, including the
inhomogeneous inclusion problem by matching the displacement on qO with solution (45).

Walpole (1991) considered the same elasticity problem in Eq. (18) with F0 replaced by a
skew-symmetric Wn. Combining Walpole’s solution and Eshelby’s solution, one can solve
the elasticity problem in Eq. (18) for general F0 2 R3�3.

Using Fourier transformation, we can prove the following general theorem, which
covers the magnetostatic problem (2), Eshelby’s solution and Walpole’s solution. See Liu
et al. (2005) for details.

Theorem A.1. Consider a region O 	 Rn and the PDE

divð�LruðxÞ þ BwOðxÞÞ ¼ 0 i:e:; �Lipjquq;ij þ BpjwO;j ¼ 0 8x 2 Rn, (46)

where u : Rn 7!Rm is the unknown field, B is a constant m� n matrix, and

L 2 L 	 Rn�m�n�m, where

L � fG jGipjq ¼ Gjqip;GipjqzizjZpZqXaziziZpZp for a40g.

Also, all derivatives, if necessary, should be understood in weak sense.
If O is an ellipsoidal region, then the solution of PDE (46) restricted to O can be expressed

as

uq ¼ RipjqBpjxi 8x 2 O with Ripjq ¼
1

sðnÞ

Z
Sn�1

detðLÞNpqðk̂Þk̂ik̂j

jLk̂jn
dk̂, (47)

where Sn�1 is the surface of the unit ball Bn in Rn centered at the origin, sðnÞ is the surface

area of this unit ball, k̂ denotes the unit vector in Rn, L 2 Rn�n
sym is the linear transformation

such that O ¼ LBn ¼ fy j y ¼ Lx;x 2 Bng, and Npqðk̂Þ is the inverse matrix of the matrix

Lipjqk̂ik̂j, i.e., Nprðk̂ÞLirjqk̂ik̂j ¼ dpq.

It is clear that Npqðk̂Þ ¼ Nqpðk̂Þ. Thus, the tensor Ripjq 2 Rn�m�n�m has the symmetry that
Ripjq ¼ Rjqip. If the coordinate system is chosen to be aligned with the principle axes of the
ellipsoid O, then L ¼ diag½a1; a2; . . . ; an�, where a1; a2; . . . ; an are the half lengths of axes of
the ellipsoid O.

The magnetostatic equation (2) with uniform magnetization m0 on O is a special case of
(46) with n ¼ 3; m ¼ 1, B ¼ gm0, and L ¼ dij . Therefore, if O is an ellipsoid, from the last
theorem, the solution inside the ellipsoid can be written as

xm;iðxÞ ¼ Dijm
0
j 8x 2 O and Dij ¼

g
4p

Z
S2

detðLÞk̂ik̂j

jLk̂j3
dk̂.
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The elasticity problem ðP0 2 R3�3Þ

divð�CruPðxÞ þ P0wOÞ ¼ 0 (48)

is also a special case of (46) with n ¼ 3; m ¼ 3, and L ¼ C. (The elastic modulus tensor C
has the additional symmetries: Cijkl ¼ Cjikl ¼ Cijlk.) From Theorem A.1, we have the
following formulae:

uPðxÞ ¼ ðuPÞq ¼ RipjqP0
pjxi 8x 2 O and Ripjq ¼

1

4p

Z
S2

detðLÞNpqðk̂Þk̂ik̂j

jLk̂j3
dk̂ (49)

if O is an ellipsoid. From the continuity of surface traction on qO, we have

ðCruPðxÞÞn ¼ ðCRP
0
� P0Þn 8x 2 qOþ. (50)

By the divergence theorem, the elastic energy can be written asZ
R3

ruP � CruP dx ¼

Z
R3

wOP
0 � ruP dx ¼ jOjP0 � RP040 8P0a0. (51)

Thus the 4th order tensor R is invertible and positive-definite in the sense of (51), and so is
R�1.
Following Eshelby (1957), if O is an ellipsoid, the elasticity problem in Eq. (18) can be

solved by matching the boundaries of this problem and problem (48). Since the 4th order
tensor R is invertible, if we choose P0 ¼ R�1F in problem (48), then the solution uP of
problem (48) satisfies Eq. (18), i.e., uP is exactly the unique solution of the elasticity
problem in (18). Thus, from Eq. (50) to (51), the surface traction on qOþ and the elastic
energy of the elasticity problem in (18) can be expressed as

ðCruðxÞÞn ¼ ðCRP0
� P0Þn ¼ ðCF� R�1FÞn 8x 2 qOþ, (52)

and

1

2

Z
R3nO
ru � Crudx ¼ �

1

2

Z
qOþ
ðn� uÞ � Crudx ¼

jOj
2

F � ðR�1 � CÞF, (53)

respectively.
Finally, the classical Eshelby inclusion problem (44) can be regarded as a special case of

problem (48) with P0 ¼ CEn
2 R3�3

sym. From the Eshelby solution (45) and Eq. (49), the
relation between Eshelby tensor S and the tensor R is

SEn ¼ 1
2
ðRCEn

þ ðRCEn
Þ
T
Þ; 8En 2 R3�3

sym or Sijkl ¼
1
2
ðRijmn þ RjimnÞCmnkl . (54)

Therefore, for any E 2 R3�3
sym,

1
2
ðRCS�1Eþ ðRCS�1EÞTÞ ¼ 1

2
ðRijmnCmnklðS

�1ÞklpqEpq þ RjimnCmnklðS
�1ÞklpqEpqÞ ¼ Eij .

So for any F 2 R3�3, let E ¼ 1
2
ðFþ FTÞ and W ¼ F� RCS�1E, then

WþWT ¼ 0. (55)

Further, because of the symmetries of C, we have

CRCS�1 ¼ CijrsRrsmnCmnpqðS
�1Þpqkl ¼

1
2
CijrsðRrsmn þ RsrmnÞCmnpqðS

�1Þpqkl

¼ CijrsSrspqðS
�1Þpqkl ¼ Cijkl ¼ C. ð56Þ
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Thus, for any F 2 R3�3 we have

F � R�1F ¼ ðWþ RCS�1EÞ � R�1ðWþ RCS�1EÞ

¼ ðRCS�1EÞ � R�1ðRCS�1EÞ þ 2W � R�1ðRCS�1EÞ þW � R�1W

¼ E � CS�1EþW � R�1W, ð57Þ

where in the second equality, we use the symmetry ðR�1Þipjq ¼ ðR
�1Þjqip, and in the third

equality, we use the symmetry Cipjq ¼ Cpijq and Eqs. (55)–(56).
In particular, when C is the isotropic elasticity tensor, i.e., C ¼ ðCÞipjq ¼ mdijdpqþ

mdpjdiq þ ldipdjq, then the matrix Npqðk̂Þ in Eq. (49) is equal to 1
m dpq �

mþl
mðlþ2mÞ k̂pk̂q. From

Eq. (54) one has

Ripjq ¼
1

m
dpqI ij �

lþ m
mðlþ 2mÞ

Iipjq,

Sipjq ¼
1

2
ðlðRiprrdjq þ RpirrdjqÞ þ mðRipjq þ Ripqj þ Rpijq þ RpiqjÞ

¼
l

lþ 2m
djqI ip þ

1
2
ðdpqI ij þ dpjI iq þ diqIpj þ dijIpqÞ �

2ðmþ lÞ
lþ 2m

Iipjq,

where

I ip ¼
1

4p

Z
S2

detðLÞk̂ik̂p

jLk̂j3
dk̂ and Iipjq ¼

1

4p

Z
S2

detðLÞk̂ik̂pk̂j k̂q

jLk̂j3
dk̂.
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