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We present solutions to the Eshelby conjectures based on a variational inequality. We first
discuss the meanings of Eshelby’s original statement. By Fourier analysis, we establish the
connection between the homogeneous Eshelby inclusion problem and the classic Newtonian
potential problem.We then proceed to the solutions of the Eshelby conjectures. Under some
hypothesis on the material properties and restricted to connected inclusions with Lipschitz
boundaries, we show that one version of the Eshelby conjectures is valid in all dimensions and
the other version is valid in twodimensions.Wealso showthe existence ofmultiply connected
inclusions in all dimensions and the existence of non-ellipsoidal connected inclusions in three
and higher dimensions such that, in physical terms and in the context of elasticity, some
uniform eigenstress of the inclusion induces uniform strain on the inclusion. We numerically
calculate these special inclusions based on the finite-element method.
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1. Introduction

The following remarkable property of ellipsoids was first observed by Poisson
(1826): given a uniformly magnetized/polarized ellipsoid, the induced magnetic/
electric field is also uniform inside the ellipsoid. Explicit expressions for this field
were obtained by Maxwell (1873). A similar result also occurs in linearized
elasticity, where the Eshelby solution asserts that a uniform eigenstress on an
ellipsoidal inclusion in an infinite elastic medium induces uniform strain inside
the ellipsoid (Eshelby 1957, 1961; Mura 1987). In a general setting, this
remarkable property of ellipsoids can be summarized as the following theorem.

Theorem 1.1. Let L : Rm!n/R
m!n be either self-adjoint and positive definite

or an elasticity tensor with the usual symmetries, U3R
n be an inclusion and cU

be the characteristic function of U. Let v2W 1;2
locðRn;RmÞ be a solution of

div½LVvCPcU�Z 0 on R
n ð1:1Þ

in the sense that

½VvðxÞ�pi Z
K1

ð2pÞn
ð
Rn
NpqðkÞðPÞqjðkÞjðkÞi

ð
U
expðik$ðxKx 0ÞÞdx 0dk; ð1:2Þ

where Npq(k) is the inverse of the matrix ðLÞpiq jðkÞiðkÞj . If nZ2, 3 and U is
an ellipsoidal inclusion, then Vv is uniform on U for any P2R

m!n.
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In equation (1.2) and subsequently, the Einstein summation convention is
followed. Throughout this paper, we mean by the term inclusion an open and
bounded domain which may have several separated components. Obviously, the
representation formula in (1.2) follows from Fourier analysis, see Khachaturyan
(1983) andMura (1987). Below, we sometimes write a solution of (1.1) as v(x, P) to
emphasize the (linear) dependence of v onP. A proof of theorem 1.1 can be adapted
from the calculations in Mura (1987, ch. 3), see also Asaro & Barnett (1975). Note
that equation (1.1) covers the physical problems mentioned above. In electro-
statics/magnetostatics,mZ1 and equation (1.1) determines the electric/magnetic
fieldVv inducedby a uniformpolarization/magnetizationP onUwith permitivity/
permeability tensor L. In linearized elasticity, equation (1.1) is referred to as the
homogeneous Eshelby inclusion problem, where L, v and P represent elasticity
tensor, displacement and eigenstress, respectively. Since Vv being constant on U
leads to great simplification, ellipsoidal inclusions play a central role in the theory of
composites (Christensen 1979; Milton 2002), in micromechanics (Mura 1987) and
in experimental measurements (Brown 1962). The uniformity of the induced field
can also be used to solve the minimization problems that arise in the theories of
ferroelectric andmagnetostrictivematerials (Bhattacharya&Li 2001;DeSimone&
James 2002; Liu et al. 2006). To extend these analyses, a natural question arises: are
there any other inclusions having this uniformity property? Eshelby (1961)
conjectured: ‘. Among closed surfaces, the ellipsoid alone has this convenient
property.’. One can take this statement to mean the following.

(i) For an inclusion U3R
3, if the induced field Vv(x, P) defined by (1.2) is

uniform on U for a single non-zero P2R
3!3, then Umust be an ellipsoid.

(ii) For an inclusion U3R
3, if the induced field Vv(x, P) defined by (1.2) is

uniform on U for any P2R
3!3, then Umust be an ellipsoid.

In the context of Eshelby (1961), the tensor L in (1.1) is an isotropic elasticity
tensor. Naturally, we generalize these conjectures to other positive semi-definite
tensors and other dimensions. For future convenience, we refer to statements
(i) and (ii) as Eshelby conjectures I and II, respectively. Clearly, Eshelby
conjecture I implies Eshelby conjecture II. It appears that many authors tacitly
choose the second meaning of Eshelby’s statement and quote it as the Eshelby
conjecture (e.g. Markenscoff 1998a; Mura 2000). Various authors have tried to
prove or disprove the Eshelby conjecture. For instance, Mura et al. (1994; see
also Mura 2000) claimed that certain pentagonal star-shaped domains share this
remarkable property with ellipsoids, which was later pointed out by Rodin (1996)
and Markenscoff (1998a) to be false. Markenscoff (1998a) showed that the
domains in R

3 with this uniformity property, considered in a proper space, have
to be closed and form a nine-dimensional manifold. She also showed that any
shape with a planar piece on its boundary cannot have this property
(Markenscoff 1998b). Meanwhile, all other known solutions for non-ellipsoidal
inclusions do not contradict the Eshelby conjectures; see Lee & Johnson (1977)
for solutions of cuboidal inclusions, Wu & Du (1995) for solutions of circular
cylinders and Rodin (1996) for solutions of polyhedra. The Eshelby conjectures
were proved by complex variables method in two dimensions (see Sendeckyj
1970; Ru & Schiavone 1996). All this evidence suggests that the Eshelby
conjectures, especially the second version, would probably be true in any
Proc. R. Soc. A (2008)
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dimension. The main difficulty of a proof arises from the non-local dependence of
Vv on U, which is governed by the partial differential equation (1.1). Therefore,
it is hard to verify if Vv is exactly uniform on U for a given inclusion U.

In this paper we present solutions to the Eshelby conjecture interpreted in either
sense. We overcome the aforementioned difficulty by considering a variational
inequality. Roughly speaking, instead of calculating the induced field Vv for a
given inclusionU, we prescribe the fieldVv and then construct the inclusionU such
that it gives rise to this field. In this way we are able to show the validity of Eshelby
conjecture II if restricted to connected inclusions with Lipschitz boundaries.
Moreover, we can construct simply connected non-ellipsoidal inclusions in three
dimensions and multiply connected inclusions in all dimensions having uniform
fields Vv on the inclusions for various matrices P. The existence of such simply
connected non-ellipsoidal inclusions shows that the validity of Eshelby conjecture
I in general depends on the tensor L and the matrixP in three or more dimensions
even if restricted to connected inclusions with Lipschitz boundaries.

To proceed, we shall require that
m Zn and ðLÞpiqj Zm1dijdpq Cm2dpjdiq Cldipdjq; ð1:3Þ

where dij (i, jZ1,., n) are the components of the identity matrix I. The
constants m1, m2 and l are required to satisfy

m1Rm2; m1Cm2O0 and lOKðm1Cm2Þ=n; ð1:4Þ
which ensures L is either positive definite or an isotropic elasticity tensor. It is
worthwhile noticing that tensors of this form cover the most common situations
in the physical problems discussed above. In particular,

(i) m1Zm2ZmO 0 corresponds to isotropic elasticity tensors and
(ii) m2ZlZ0 corresponds to isotropic permittivity/permeability tensors in

electrostatic/magnetostatic problems. In fact, each component in the
vector v is the potential induced by the polarization/magnetization of the
corresponding row vector in the matrix P.

We now state the main results of this paper.

Theorem 1.2. If nR2,L is given by (1.3 ) and (1.4 ), and, if restricted to connected
inclusions with Lipschitz boundaries, Eshelby conjecture II holds. More precisely, if
an inclusion U is connected and vU is Lipschitz continuous, and if equation (1.1 )
with L specified by (1.3 ) and (1.4 ) has a solution v(x, P) satisfying

Vvðx;PÞZ const: on U cP2R
n!n; ð1:5Þ

then U must be an ellipsoidal inclusion.

Theorem 1.3. If nZ2,L is given by (1.3 ) and (1.4 ), and, if restricted to connected
inclusions with Lipschitz boundaries, Eshelby conjecture I holds. More precisely, if
an inclusion U is connected and vU is Lipschitz continuous, and if equation (1.1 )
with L specified by (1.3 ) and (1.4 ) has a solution v(x, P) satisfying

Vvðx;PÞZ const: on U for a single non-zero P2R
n!n; ð1:6Þ

then U must be an elliptic inclusion.

Theorem 1.3 has been proved by Sendeckyj (1970), see also Ru & Schiavone
(1996). We recently learned of works of Kang & Milton (in press) who proved
theorem 1.2 for nZ3, see also Dive (1931) andNikliborc (1932). They also observed
Proc. R. Soc. A (2008)
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that the Pólya & Szegö conjecture (1951) is equivalent to Eshelby conjecture II for
L specified as in (1.3). Also, they found a class of two-component two-dimensional
inclusions with the special property described in theorem 1.4 (Kang et al.
submitted; see also Cherepanov 1974). We remark that our work is simultaneous
and independent from theirs. In particular we are able to construct the following
examples,which show that the requirement ofUbeing connected in theorem1.2 and
the condition nZ2 in theorem 1.3 are indispensable.

Theorem 1.4. Consider equation (1.1 ) with L specified by (1.3 ) and (1.4 ).
There exist multiply connected inclusions U3R

n (nR2) such that:

(i) the induced field Vv(x, P) is uniform on U for any P2R
n!n if m2ClZ0 and

(ii) the induced field Vv(x, I ) is uniform on U for the identity matrix I2R
n!n if

m2Cls0.

Theorem 1.5. If nR3, Eshelby conjecture I may or may not be valid, depending
on the tensor L and the matrix P2R

n!n. More specifically, if an inclusion U is
connected and vU is Lipschitz continuous, and if equation (1.1 ) with L specified
by (1.3 ) and (1.4 ) with m2ClZ0 has a solution v(x, P) satisfying

Vvðx;PÞZ const: on U for a single non-zero P2R
n!n; ð1:7Þ

(i) if PZI, U must be an ellipsoidal inclusion and
(ii) if PZdiagð1; 0;.; 0Þ, U need not be an ellipsoidal inclusion, see the

counterexample in §3d.

The paper is organized as follows. In §2 we introduce a variational inequality
and explain how it is related with the Eshelby conjectures. From the established
theory of variational inequalities, we obtain the key existence and uniqueness
theorem 2.3. Based on theorem 2.3, we prove Eshelby conjectures I and II
(theorems 1.2 and 1.3) in §3a,b, respectively. We prove theorems 1.4 and 1.5 in
§3c,d, respectively. A numerical scheme is described in §3c and is used to
calculate various special inclusions in §3c,d. A similar scheme has been verified
and applied to calculate periodic E-inclusions in Liu et al. (submitted). Finally,
in §4 we summarize our results and propose a few applications.
2. A related variational inequality

In this section we first explain the relation between equation (1.1) and the classic
Newtonian potential problem. Let GðxÞZGðjxjÞ be the fundamental solution of
the Laplace operator on R

n

GðxÞZ

1

2p
logðjxjÞ if n Z 2;

1

nð2KnÞun

1

jxjnK2
if nR3;

8>>>><
>>>>:

ð2:1Þ

Proc. R. Soc. A (2008)
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where un denotes the volume of a unit ball in R
n. Following eqn (4.2) of Gilbarg &

Trudinger (1983), we call uðxÞZK
Ð
RnGðxKyÞcUðyÞdy the Newtonian potential

induced by the sourceKcU. Clearly, the Newtonian potential satisfies the Poisson
equation

DuðxÞZKcUðxÞ on R
n: ð2:2Þ

By Fourier analysis, the second gradient of the Newtonian potential u(x) can be
represented as

½VVuðxÞ�ij Z
K1

ð2pÞn
ð
Rn

ðkÞjðkÞi
jkj2

ð
Rn
cUðx 0Þ exp ðik$ðxKx 0ÞÞdx 0 dk: ð2:3Þ

Owing to the special form of L (cf. (1.3)),VVu in (2.3) are closely related withVv in
(1.2). To see this, we calculate the inverse of ðLÞpiqjðkÞiðkÞj as

NpqðkÞZ
1

m1jkj2
dpqK

m2 Cl

m1ðlCm1 Cm2Þ
ðkÞpðkÞq
jkj4

; ð2:4Þ

whence ðLÞpiq jðkÞiðkÞjZm1jkj2dpqCðm2ClÞðkÞpðkÞq. Comparing equation (1.2)
with (2.3), we immediately have

Lemma 2.1. Consider equation (1.1 ) with L specified by (1.3 ) and (1.4 ) and
the Newtonian potential problem (2.2 ). Let Vv(x, P) and VVu(x) be given by
(1.2 ) and (2.3), respectively.

(i) For any inclusion U and PZI, we have

Vvðx; I ÞZVVuðxÞ=ðm1Cm2 ClÞ: ð2:5Þ

(ii) If in particular m2ClZ0, then, for any P2R
n!n, we have

Vvðx;PÞZPVVuðxÞ=m1: ð2:6Þ

From lemma 2.1, we see that the uniformity of Vvðx; I Þ on U is equivalent to
the uniformity of VVu on U. Of course, for the Newtonian potential problem (2.2),
VVu being uniform on U is an overdetermined condition and cannot be true unless
U is very special. From theorem 1.1, we know that ellipsoids enjoy such property.

To construct special inclusions such that a certain overdetermined problem
admits a solution, we consider the following variational inequality:

GrðurÞZ inf
v2Kr

GrðvÞh
ð
Br

1

2
jVvj2 dx

� �
; ð2:7Þ

where Br 3R
n (nR2) is the open ball centred at the origin of radius r and for a

given function f : Rn/R called the obstacle, the admissible set

Kr dfvKgnðrÞ2W 1;2
0 ðBrÞ : vRf on Brg: ð2:8Þ

Here gn : ð0;NÞ/R is defined as (QO0 is fixed)

gnðrÞZ
KQ log r; if n Z 2;

0 if nR3:

(
ð2:9Þ
Proc. R. Soc. A (2008)
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Note that gn(r) is a constant for fixed r. In the following discussions we restrict
ourselves to obstacles f : Rn/R with the following properties:

(i) f2C0;1ðRnÞ, there exists R0O0 such that for some 0!R0
0!R0, fðxÞ!

gnðjxjÞKaðR 0
0Þ for all jxjRR0, where

aðR 0
0ÞZ

maxfjfðxÞj : jxjZR0
0gC jgnðR0

0Þj if n Z 2;

0 if nR3;

(

(ii) jDfj is essentially bounded on BR0
nU �, where U � is the set of singular

points on which jVVfj is unbounded in distributional sense, and
(iii) for all unit vector x2R

n, v2f=vx2OKC on R
n in the sense of distributions,

where v/vx denotes the directional derivative. In other words,ð
v24

vx2
fC

1

2
C jxj2

� �
dxR0;

for any 42CN
c ðRnÞZfsmooth functions with compact supportg (see

Friedman 1982, p. 27).

We use the variational inequality (2.7) to find the minimizer ur and the
coincident set fx2Br : urðxÞZfðxÞg, and then we pass to the limit r/N to
establish the existence of special inclusions such that a certain overdetermined
problem admits a solution. Similar arguments of this type can be found in Liu
et al. (submitted). For the convenience of the reader, we present the details of the
arguments below which treat general obstacles and include the case nZ2.

First, let us recall from the established theory (Kinderlehrer & Stampacchia
1980, p. 129; Friedman 1982, p. 31) the following existence and regularity theorem:

Theorem 2.2. For the obstacle f specified above, the variational inequality
(2.7 ) has a unique minimizer ur 2W 2;NðBrÞhKr for each rRR0. Further, the
unique minimizer satisfies

(i) f%ur%supffðxÞ : x2Brg on Br ,
(ii) the boundary of the coincident set Ur dfx2Br : urðxÞZfðxÞg has

measure zero in R
n, and

(iii) there exists a constant CO0, independent of r, such that

jjVVur jjLNðBr Þ!C : ð2:10Þ

By choosing appropriate test functions (Friedman 1982, p. 6), it can be shown
that the minimizer ur satisfies

KDurR0; urRf and KDurðurKfÞZ 0 a:e: on Br : ð2:11Þ
Thus, the minimizer ur in fact solves the following overdetermined problem:

Dur ZcUr
Df a:e: on Br ;

VVur ZVVf on UrnvUr ;

ur Z gnðrÞ on vBr :

8>>><
>>>:

ð2:12Þ
Proc. R. Soc. A (2008)



579Solutions to the Eshelby conjectures
A limiting minimizer of problem (2.7) can be defined as follows. Let rj/CNbe
an increasing sequence. From the properties (i) and (iii) of ur in theorem 2.2, it
follows that, for any rOROR0, there is a constant M, independent of r, such that

jjur jjW 2;NðBRÞ%M : ð2:13Þ

Since urj is uniformly bounded in W 2;NðBRÞ for fixed ROR0, there exists uN2

W 2;NðBRÞ such that, up to a subsequence and without relabelling,

urj.uN weakly� in W 2;NðBRÞ: ð2:14Þ

From (2.11) and (2.14), we can verify that

KDuNR0; uNRf and KDuNðuNKfÞZ 0 a:e: on BR: ð2:15Þ

In particular, the first two of (2.15) follow from linearity, while the third of (2.15) is
justified by the uniformconvergence of urj/uN. In fact, we can repeat this argument
for a sequence of larger and larger values ofR, each time taking further subsequences
of urj , and thereby obtain a function uN2W 2;N

loc ðRnÞ satisfying (2.14) and (2.15) for

anyROR0. Note that equation (2.15) implies that the coincident setUNdfx2R
n :

uNðxÞZfðxÞg3BR0
has the property that jvUNjZ0 (see Friedman 1982, p. 154).

We claim that uN solves the following overdetermined problem:

DuNZcUN
Df a:e: on R

n;

VVuNZVVf on UNnvUN;

juNðxÞKgnðjxjÞj%
C0

jxjnK2
for jxjRR 0;

8>>>>>>><
>>>>>>>:

ð2:16Þ

for some C0O0 that is independent of x. The first two equations in (2.16) are
consequences of the last equation in (2.15) and the definition of the coincident set
UN with jvUNjZ0.

To justify the last equation in (2.16), we note that, by the maximum principle
applied to the first of (2.11), the minimum of urðxÞ must be attained at vBr

which implies urðxÞRgnðrÞ on Br . From equation (2.9) and property (i) of the
obstacle, it immediately follows that, if nR3, the coincident set Ur is contained in
the open ball BR 0

for all rOR0. We now show that this is also true for nZ2.
If nZ2, we note that D½urðxÞK gnðjxjÞ�ZDurðxÞ%0 on BrnBR0

0
for any

0!R 0
0!R 0. Also, urðxÞK gnðjxjÞZ0 on vBr and jurðxÞK gnðjxjÞj%supfjfðxÞj :

x2vBR0
0
gC jgnðR 0

0ÞjZaðR 0
0Þ on vBR0

0
. From the maximum principle applied to

urðxÞK gnðjxjÞ restricted to BrnBR0
0
, we conclude that urðxÞRgnðjxjÞKaðR 0

0Þ on
BrnBR0

0
. By property (i) of the obstacle, we have that the coincident set Ur 3BR0

for nZ2 and all rOR 0.
Proc. R. Soc. A (2008)
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Further, we recall the Dirichlet Green’s function for Br (Gilbarg & Trudinger
1983, p. 19)

Grðx;yÞZ

1

2p
logðjyKxjÞKlog

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjxjjyj=rÞ2Cr2K2x$y

q� �� �
if nZ2;

1

nð2KnÞun

1

jyKxjnK2
K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjxjjyj=rÞ2Cr2K2x$y

q� �2Kn
2
4

3
5 if nR3:

8>>>>><
>>>>>:

ð2:17Þ
From the first and third equations in (2.12), we can express ur as

urðxÞZ gnðrÞC
ð
Rn
Grðx;yÞDfðyÞcUr

ðyÞdy: ð2:18Þ

From equation (2.10), we have Ur 3ðBR0
nU �Þ for all rOR0 and hence jDfj is

essentially bounded on Ur by property (ii) on p. 6. From equations (2.9), (2.17)
and (2.18) it immediately follows that, for nR3,

jurðxÞK gnðjxjÞjZ jurðxÞj%
C0

jxjnK2
cR0% jxj!r; ð2:19Þ

where C0O0 is a constant independent of r. For nZ2, since Ur 3BR0
, D½urðxÞK

gnðjxjÞ�Z0 on BrnBR0
by the first equation in (2.12). Again, note that urðxÞK

gnðjxjÞZ0 on vBr and jurðxÞK gnðjxjÞj%aðR0Þ on vBR0
. From the maximum

principle applied to urðxÞK gnðjxjÞ restricted to BrnBR0
, we conclude that

equation (2.19) also holds for nZ2 and the constant C0Za(R0). Therefore, by
the triangle inequality and (2.19) we have

juNðxÞK gnðjxjÞj% juNðxÞK urj ðxÞjC jurj ðxÞK gnðjxjÞj
% jurj ðxÞK uNðxÞjCC0=jxjnK2 on BR:

Fixing R and sending rj/N, we get the third equation in (2.16) for all nR2.
Finally, we show that the limiting minimizer uN must be unique. Assume

that equations (2.15) and (2.16) are satisfied by a second function u 0
N2W 2;2

locðRnÞ.
Let U0

Ndfx2R
n : u 0

NðxÞZfðxÞg be the new coincident set. By the divergence
theorem, we have for any ROR0 and any v2KNdfw2W 1;2

locðRnÞ : wRfg,ð
BR

VuN$VðvK uNÞdxK
ð
vBR

ðvK uNÞn$VuN dS Z

ð
BR

ðKDuNÞðvK uNÞdx

Z

ð
fx2BR:uNOfg

ðKDuNÞðvK uNÞdxC

ð
fx2BR:uNZfg

ðKDuNÞðvKfÞdxR0; ð2:20Þ

where dS denotes the surface measure on vBR, n is the outward normal of dS,
and the inequality follows from (2.15). Clearly, equation (2.20) holds with uN
replaced by u 0

N as well:ð
BR

Vu 0
N$VðvKu 0

NÞdxK
ð
vBR

ðvKu 0
NÞn$Vu 0

N dSR0 cv2KN: ð2:21Þ
Proc. R. Soc. A (2008)



581Solutions to the Eshelby conjectures
Since u 0
N; uN2KN, adding equation (2.20) with vZu 0

N to equation (2.21) with
vZuN, we obtain

K

ð
BR

jVðu 0
NK uNÞj2 dxC

ð
vBR

ðuNKu 0
NÞn$VðuNKu 0

NÞdSR0: ð2:22Þ

Further, by equations (2.16) and (2.1), we can express uN ðu 0
NÞ as

uNðxÞZ
Ð
RncUN

ðyÞDfðyÞGðxKyÞdyCC1;

u 0
NðxÞZ

Ð
RncU0

N
ðyÞDfðyÞGðxKyÞdyCC 0

1

� 	
;

)
ð2:23Þ

where C1;C
0
1 are constants that are equal to zero if nR3. Sending R/N in (2.22),

by equations (2.23) and (2.1), we have limR/N

Ð
vBR

ðuNKu 0
NÞn$VðuNKu 0

NÞdSZ0
for nR3. Thus, by (2.22) we obtain

K lim
R/N

ð
BR

jVðu 0
NK uNÞj2 dxR0; ð2:24Þ

which clearly implies that uN can be different from u 0
N at most by a constant. From

the last equation in (2.16), it follows that u 0
NZuN if nR3. Below, we show that the

same conclusion holds for nZ2.
If nZ2, by the last equation in (2.16), (2.23) and (2.1), we haveð

Rn
cUN

ðyÞDfðyÞdy Z

ð
R3
cU0

N
ðyÞDfðyÞdy ZK2pQ ð2:25Þ

and

juNðxÞKu 0
NðxÞj% juNðxÞK gnðjxjÞjC ju 0

NðxÞK gnðjxjÞj%2C0 c jxjOR 0:

ð2:26Þ

Therefore, again by equations (2.23) and (2.1) we have

jV½uNðxÞKu 0
NðxÞ�j%

C

jxj2
c jxjOR 0; ð2:27Þ

where CO0 is some constant independent of x. From equations (2.26) and (2.27),
it is clear that, for nZ2,

lim
R/N

ð
vBR

ðuNKu 0
NÞn$VðuNKu 0

NÞdS Z 0:

By sending R/N in equation (2.22), we again obtain equation (2.24), which
implies that uN can be different from u 0

N at most by a constant. If this constant is
non-zero, one of the coincident sets UN and U0

N must be empty, which contradicts
equation (2.25) since QO0.

We remark that the uniqueness of the weak limit implies that the convergence
in equation (2.14) is in fact strong (see Rudin 1991). We summarize below.

Theorem 2.3. Consider the variational inequality problem (2.7 ) with an
obstacle f specified as above. Define the limiting minimizer uN and coincident set
UN as above. Then the interior of the coincident set UN3BR 0

is an inclusion such
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that the overdetermined problem

Du ZcUN
Df a:e: on R

n;

VVu ZVVf on UNnvUN;

juðxÞKgnðjxjÞj%
C0

jxjnK2
for jxjRR 0;

8>>>>>>><
>>>>>>>:

ð2:28Þ

is solved by uZuN2W 2;N
loc ðRnÞ, which also satisfies

KDuR0; uRf and KDuðuKfÞZ 0 a:e: on BRcROR 0: ð2:29Þ
Further, if there is a second u 02W 2;2

locðRnÞ that satisfies equation (2.29 ) and
(2.28 ), then u 0Zu.

We remark that the last equation in (2.28) assures that a solution of (2.28) is
the Newtonian potential (within an additive constant if nZ2) induced by the
source cUN

Df.
3. Solutions to Eshelby conjectures

In this section we present the details of the proofs of theorems 1.2 and 1.3 and
examples of special inclusions in various senses. Both the proofs and examples
are derived from theorem 2.3.
(a ) Proof of Eshelby conjecture II (theorem 1.2)

To prove theorem 1.2, by lemma 2.1, equation (2.5), we see that it is sufficient
to show that, if a connected inclusion U with Lipschitz boundary is such that the
overdetermined problem

Du ZKcU on R
n;

VVu ZQ on U;

juðxÞK gnðjxjÞj%
C0

jxjnK2
on R

nnBR0
;

8>>>>>>><
>>>>>>>:

ð3:1Þ

admits a solution u2W 2;2
locðRnÞ for some Q2R

n!n
sym with TrðQÞZK1, then U

must be an ellipsoid.
From equations (2.1) and (3.1), we have

uðxÞZK

ð
Rn
cUðyÞGðxKyÞdyCC ; ð3:2Þ

where C is a constant that vanishes if nR3. By the divergence theorem, we haveð
Rn
ðVVuÞ2 dx Z

ð
Rn
VVuDu dx: ð3:3Þ
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Since U is bounded and TrðQÞZK1, the l.h.s. of (3.3) is always a positive
definite matrix, which by the first two equations in (3.1) and (3.3) implies that
the matrix Q is negative definite. Further, since U is a connected inclusion, there
exists a quadratic function

fðxÞZ 1

2
ðxKdÞ$QðxKdÞCh such that uðxÞZfðxÞ cx2U; ð3:4Þ

where d2R
n and h2R.

We claim uRf on R
n. To show this, we note that vU being Lipschitz

continuous implies that, for any unit vector m2R
n,

m$VuðxÞZK

ð
Rn
cUðyÞm$VGðxKyÞdy Z

ð
vU
GðxKyÞm$nðyÞdSðyÞ;

where, in the last equality, we have used the fact VxGðxKyÞZKVyGðxKyÞ and
the divergence theorem. Note that, above and subsequently, the gradient V is
taken with respect to x unless it is stated otherwise. Thus, m$VuðxÞ is a single-
layer potential induced by a layer of charge with surface density m$n on vU.
By potential theory (see Kellogg (1929, p. 160) for a classic treatment or
Kenig (1994, p. 54) and references therein for a modern viewpoint), it can be
shown that

V½m$VuðxÞ�jvUCKV½m$VuðxÞ�jvUK Z ½m$nðxÞ�nðxÞ for a:e: x2vU;

where vUC (vUK) means the limiting values approached from outside (inside) U.
Let vmZm$½VVðuKfÞ�m. By the second equation in (3.1) and (3.4), we have

vmðxÞjvUC Zm$½VVuðxÞKQ�mjvUC Z ½m$nðxÞ�2R0 for a:e: x2vU: ð3:5Þ

Also, from the representation formula (3.2), it is clear that

vmðxÞ/Km$QmO0 as jxj/N:

Direct calculations reveal that DvmZ0 on R
nn �U. By the maximum principle

applied to vm restricted to R
nn �U, we conclude vmR0 on R

nn �U. Additionally, we
note that, for any y2R

nn �U, there exist a point x02vU and a unit vectorm such
that y is an endpoint of the segment fx0C tm : 0% t% t0g3R

nn �U. Therefore,
for wðtÞZuðx0C tmÞKfðx0C tmÞ we have

wð0ÞZ 0;
dwðtÞ
dt





tZ0

Z 0;
d2wðtÞ
dt2

Z vmðxC tmÞR0 c0! t% t0; ð3:6Þ

where we have used the fact that uðxÞ2C1ðRnÞ (see Gilbarg & Trudinger 1983,
p. 54). By equation (3.6), we concludewðt0ÞZuðyÞKfðyÞR0. Thus, u2W 2;2

locðRnÞ
satisfies the overdetermined problem (3.1) and equation (2.29) for the quadratic
function f in (3.4).

Finally, from the explicit Newtonian potential uE2W 2;N
loc ðRnÞ induced by the

sourceKcUE
on an ellipsoidal inclusion UE (see the textbook of Kellogg (1929) for

nZ3 and a paper of Shahgholian (1991) for nR2), it is known that, for the
quadratic function fðxÞZ1=2ðxKdÞ$QðxKdÞCh, there exists an ellipsoid,
appropriately positioned in the space, such that the Newtonian potential uE

induced by KcUE
satisfies (within an additive constant if nZ2) the
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overdetermined problem (3.1) and equation (2.29) for the same obstacle as in
(3.4). By theorem 2.3, we conclude that uEZu and UZUE, which completes our
proof of theorem 1.2.
(b ) Proof of Eshelby conjecture I in two dimensions (theorem 1.3)

In two-dimensional space (nZ2), Eshelby conjecture I is also true since it also
implies the overdetermined problem (3.1) admits a solution. To see this, let us
recall equations (1.2), (2.4) and (2.5). We will show equation (1.6) implies that
the Newtonian potential u ofKcU satisfies VVuZconst: on U if nZ2, and, so,
theorem 1.3 will follow by the same arguments as theorem 1.2, see §3a.

For any non-zero P2R
2!2, by choosing an appropriate coordinate system we

can write it as

P Z
a c

Kc b

" #
;

where a2Cb2Cc2s0. There are two possibilities that need separate attention.

(i) If asb, contracting p and i in (1.2), by equations (2.4) and (1.6), we have

½Vvðx;PÞ�pp Z
K1

ð2pÞnðm1 Cm2ClÞ

ð
Rn

aðkÞ21CbðkÞ22
jkj2

gUðk;xÞdk ð3:7Þ

is constant for all x2U, where gUðk; xÞZ
Ð
Uexpðik$ðxKx 0ÞÞdx 0: By the

inversion theorem, we also haveð
Rn

ðkÞ21CðkÞ22
jkj2

gUðk;xÞdk Z

ð
Rn
gUðk;xÞdk Z ð2pÞ2cUðxÞ: ð3:8Þ

Since asb, ðkÞ2i for each iZ1, 2 can be written as a linear combination of
aðkÞ21CbðkÞ22 and ðkÞ21CðkÞ22. Thus,ð

Rn

ðkÞ2i
jkj2

gUðk;xÞdk Z const: on U c i Z 1; 2; ð3:9Þ

which, by equation (2.3), implies the Newtonian potential u induced by KcU

satisfies the Poisson equation (2.2) and

v2uðx 1; x 2Þ
vx21

ZA cðx1; x2Þ2U;

v2uðx 1; x2Þ
vx22

ZB cðx1; x2Þ2U;

8>>>><
>>>>:

ð3:10Þ

where A;B2R are constants. Since uðx 1; x 2Þ is an analytic function on the
inclusion U, by direct integration we see equation (3.10) implies all components
of VVuðx1; x2Þ are uniform on U. Thus, theorem 1.3 follows from theorem 1.2 and
lemma 2.1 if nZ2 and asb.
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(ii) If aZb, from equation (2.4), equations (1.2) and (1.6) imply

ð
Rn

aðkÞ21 CrcðkÞ1ðkÞ2 aðkÞ1ðkÞ2CrcðkÞ22
aðkÞ1ðkÞ2KrcðkÞ21 ak2

2KrcðkÞ1ðkÞ2

" #
gUðk; xÞ
jkj2

dk Z const: on U;

where rZðm1Cm2ClÞ=m1. Combined with equation (3.8), one can write them as

ð
Rn

a rc 0

Krc a 0

0 a rc

0 Krc a

1 0 1

2
66666664

3
77777775

ðkÞ21
ðkÞ1ðkÞ2
ðkÞ22

2
664

3
775 gUðk;xÞ

jkj2
dk Z const: on U: ð3:11Þ

Since rs0 and a2Cc2s0, the rank of the 5!3 matrix inside the integral (3.11)
is 3, which again implies equation (3.10). This fact and the arguments for the
previous case complete our proof for theorem 1.3.
(c ) Existence of multiply connected E-inclusions

To prove theorem 1.4, it is sufficient to show the existence of a multiply
connected inclusion U such that the induced field Vvðx; I Þ in (1.2) is uniform on
U. From lemma 2.1, this is equivalent to the existence of a multiply connected
E-inclusion U such that the overdetermined problem (3.1) admits a solution in
W 2;2

locðRnÞ for some Q2R
n!n
sym with TrðQÞZK1. We claim there are many other

non-ellipsoidal inclusions having this property. For reasons explained in Liu et al.
(submitted), we call such special inclusions E-inclusions. We remark that
E-inclusions include but are not limited to inclusions U such that VVu in (2.3)
are uniform on U (Liu et al. submitted).

To construct such a multiply connected E-inclusion, we consider piecewise
quadratic obstacles

fðxÞZ sup
1

2
ðxKdiÞ$QðxKdiÞChi : i Z 1;.;N

� �
; ð3:12Þ

where h1;.; hN 2R and d1;.;dN 2R
n are to be specified below. If the

symmetric matrices Q is negative definite, it is easy to verify that the obstacle
fðxÞ defined in (3.12) satisfies all the conditions required by theorem 2.3 (see
Friedman 1982, p. 44, ex. 2). We then consider the variational inequality (2.7)
with the obstacle (3.12). From the discussions in §2, a limiting minimizer uN is
well defined and we denote by U the interior of the coincident set
fx2R

n : uNðxÞZfðxÞg. Theorem 2.3 implies that U is an E-inclusion such
that the overdetermined problem (3.1) admits a solution in W 2;N

loc ðRnÞ. We now
show that U can be multiply connected if the parameters h1;.; hN 2R

and d1;.;dN 2R
n in (3.12) are chosen appropriately. For instance, let NZ2,

h1Zh2Z1 and d1ZKd2. From fðd1ÞZfðd2ÞZ1 and the last equation in (2.28)
we see U cannot be empty if nR3. If nZ2, the constant QO0 in (2.9) and
equation (2.25) assure U is non-empty. Note that VVf is unbounded on the plane
Proc. R. Soc. A (2008)
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Figure 1. A two-component E-inclusion such that the overdetermined problem (3.1) admits a
solution for QZKdiagð1:5; 1Þ=2:5.

L. P. Liu586
passing the origin and with normal d1. Thus, equation (2.10) implies U cannot
intersect with this plane. From the symmetry of f, it can be seen that U has two
components separated by this plane, and hence U is multiply connected
(figure 1). We have thus completed the proof of theorem 1.4.

It is interesting to see what these E-inclusions look like and how much they
resemble separate ellipsoids. So we consider the following numerical scheme to
solve the variational inequality (2.7). If the constraint urRf is neglected, the
Euler–Lagrange equation of the variational problem (2.7) is the familiar
boundary-value problem:

Dur Z 0 on Br and ur Z gnðrÞ on vBr :

According to the finite-element method (e.g. Kwon & Bang 2000), this boundary-
value problem can be discretized as

K̂ û Z f̂ ; ð3:13Þ

where û, a column vector, denotes the values of the potential ur at the nodal
points in the finite-element model; and K̂ and f̂ are usually called the stiffness
matrix and loads, respectively. Now let us take into account the discretized
constraint ûR f̂, where f̂ are the values of the obstacle f at the nodal points.
Then the discrete version of the variational inequality (2.7) becomes the
following quadratic programming problem:

min ĜðûÞZK
1

2
û$K̂ ûC f̂ $û : ûR f̂

� �
; ð3:14Þ
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which can be easily solved using standard solvers. The following computations
use a mesh in a unit circle or sphere (rZ1) which is denser around the coincident
set and has a total of approximately 105 nodal points. The iterations are
terminated when the relative difference between the values ĜðûÞ of two
consecutive iterations is less than 10K10. With these parameters, the iterations
converge within a few minutes on a personal computer. The resulting coincident
set Ur includes all nodal points on which jûK f̂j is less than a!10K4, where a is
of the order of 1. Since the convergence in (2.14) is in fact strong, presumably Ur

would be a good approximation of the limiting coincident set fx : uNðxÞZfðxÞg
if the boundary of Ur is relatively far away from that of the unit ball B1. Such
properties of Ur can be realized by choosing small hi and jdij in (3.12) for the
obstacle f.

If NZ1 and Q is a negative definite matrix in (3.12), by theorem 1.2 it is clear
that the coincident set should be ellipses/ellipsoids in two/three dimensions. The
numerical scheme is then verified by comparing the numerical results with the
corresponding ellipses/ellipsoids in two/three dimensions. Below we show three
examples of multiply connected E-inclusions such that the overdetermined
problem (3.1) admits a solution. The first two examples are calculated for the
obstacle f in (3.12) in two dimensions. Figure 1 shows a two-component
E-inclusion such that the overdetermined problem (3.1) admits a solution
for QZKdiagð1:5; 1Þ=2:5. The parameters in (3.12) are chosen to be NZ2,
d1Z ½0; 0:05�, d 2ZKd1 and h1Zh2Z0:02: If the parameters in (3.12) are chosen
to be NZ5, QZKdiagð1; 1Þ=2, diZ0:05!½cosð2ip=5Þ; sinð2ip=5Þ� and hiZ0:025
for iZ1;.; 5, we obtain an E-inclusion with fivefold symmetry, as shown in
figure 2. This E-inclusion has five pedal-like components on which the second
gradient of the induced potential is equal to QZKdiagð1; 1Þ=2, whereas the
potential is harmonic outside.

The third example is a three-dimensional E-inclusion such that the over-
determined problem (3.1) admits a solution for QZKdiagð1; 1; 1Þ=3 (figure 3).
Note that the mesh in this and following figures is not the actual mesh used in the
computation but is merely used for visualization. Other parameters in (3.12) are
NZ2, d1Z ½0; 0; 0:1�, d2ZKd1 and h1Zh2Z0:025. The E-inclusion has two
components which are symmetric about the plane fx : x3Z0g. As shown in the
two-dimensional example in figure 2, the boundaries of the two components
become flatter as they come closer to each other. The front view of the lower
component is plotted separately in figure 4, which shows a pedal-like area.
According to symmetry, by rotating this area around the axis e3Z ½0; 0; 1�, we
will obtain the lower component in figure 3.

We remark that, by changing the parameters in (3.12), we can construct a
very large class of E-inclusions. The shapes, topology, the number of components
and the distances between various components of an E-inclusion can all be
adjusted (see Liu et al. (submitted) for more examples in a periodic setting).
(d ) Eshelby conjecture I for nR3 (theorem 1.5)

We have shown that, with L specified by (1.3) and (1.4), Eshelby conjecture I
is valid if nZ2 or nR3 and PZI, see theorem 1.3, theorem 1.2 and equations
(2.6) and (2.5). However, if nR3, Eshelby conjecture I may not be valid
depending on the tensor L and matrix P. Below, we construct a non-ellipsoidal
Proc. R. Soc. A (2008)
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inclusion U3R
3 with smooth boundary having the property that

Vvðx;PÞZ const: on U for P Zdiagð1; 0; 0Þ;

where Vvðx;PÞ is given by (1.2) and L is specified by (1.3) and (1.4) with
m2ClZ0. By equations (2.4) and (2.3), this is equivalent to the existence of a
non-ellipsoidal inclusion U with smooth boundary such that the Newtonian
potential u induced byKcU satisfying

v2uðxÞ
vx 1xi

Z const: on U c i Z 1; 2; 3: ð3:15Þ

We use theorem 2.3 to construct such a domain in R
3. We need to carefully

define our obstacle such that the second equation in (2.28) implies (3.15) without
the first one being violated. Let f̂ : R2/R be

f̂ðx2; x3ÞZ
Q logðx22 Cx23Þ1=2 if ðx 2

2Cx23Þ1=2O1;

0 if ðx 2
2Cx23Þ1=2%1;

(

and let f : R3/R
n be

fðxÞZK
1

6
½x21Cðx2KaÞ2Cðx3KaÞ2�C f̂ðx2Kb; x3KbÞCh; ð3:16Þ

where the constants QO0 and a; b; h2R are to be determined. Direct
calculations reveal that, if aZK1, bZK3Q=2, h and Q are appropriately chosen,
say hZK2:54 and QZ2, the obstacle f defined in (3.16) enjoys the following
properties:

(i) f satisfies all properties listed on p. 5,
(ii) f!0 on U2dfx2R

n : ðx2C3Þ2Cðx3C3Þ2%1g,
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(iii) on U1dfx2R
n : ðx2C3Þ2Cðx 3C3Þ2O1g, we have DfZK1

VVfðxÞZKI=3C
1

r4
ðr2K2ðx2 C3Þ2Þe25e2Cðr2K2ðx3 C3Þ2Þe35e3
�

C2ðx2 C3Þðx3C3Þðe25e3 Ce35e2Þ�; ð3:17Þ

where rZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2C3Þ2Cðx 3C3Þ2

q
and e1; e2; e3 denote the unit vectors

which we use to define our rectangular coordinates xZðx1; x2; x3Þ, and
(iv) fð0ÞZK2:54K1=3C2 logð3

ffiffiffi
2

p
Þz0:017O0, and on U1

VfðxÞZ 0 if and only if x Z 0 and VVfðxÞjxZ0 is negative definite:

Therefore, the maximum of fðxÞ is attained only at 0.

We now apply theorem 2.3 with an obstacle defined in (3.16) satisfying all
conditions listed above. Immediately, we obtain the existence of a non-ellipsoidal
inclusion U such that the Newtonian potential u induced byKcU satisfying

VVu ZVVf on U: ð3:18Þ
That is, the overdetermined problem (2.28) admits a solution u2W 2;N

loc ðR3Þ for
the obstacle f in (3.16). Further, since f is smooth restricted to fx : fðxÞO0g, it
can be shown that the coincident set has a smooth boundary (Friedman 1982,
ch. 2). From equations (3.17) and (3.18), we see v2uðxÞ=vx1xi satisfy equation
(3.15) for iZ1; 2; 3. This completes our proof of theorem 1.5.

The numerical scheme described in §3c can be used to calculate these
inclusions U. Figure 5 shows such an example, which is calculated with the
obstacle (3.16). The parameters in (3.16) are chosen to be

h ZK2:54; a ZK1; bZK3 and QZ 2:

The inclusion in figure 5 might appear like an ellipsoid, but in fact it cannot be
an ellipsoid since not all components of VVu are uniform on the inclusion,
see equations (3.18) and (3.17). The three orthographic views are shown in figures
6–8. The view in figure 6 is from the direction e1 or from the left-hand side of
figure 5 and shows approximately an ellipse. The views in figures 7 and 8 are from
the directions of e2 and e3 or the r.h.s. and top of figure 5 and show approximately
circular areas. We are not aware of any kind of familiar geometry that can give
rise to three orthographic views as in figures 6–8. It is more or less like the shape
one would obtain by squashing a ball non-uniformly in e2Ce3 direction.
4. Summary and discussions

We have presented the solutions of the Eshelby conjectures interpreted in two
different senses. The method in the paper relies on two key observations: (i) for
tensors of form specified by (1.3), the vectorial equation (1.1) is solved by the
gradient of the Newtonian potential, see lemma 2.1, and (ii) solving the
variational inequality (2.7) can produce special inclusions such that a certain
overdetermined problem admits a solution. From the established theory about
variational inequalities, Eshelby conjecture II, restricted to connected Lipschitz
inclusions, follows from the uniqueness of the solution of the variational
Proc. R. Soc. A (2008)
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inequality (2.7) for a given quadratic obstacle, whereas by choosing other kinds
of obstacles we are able to construct various special inclusions for which the
desired overdetermined problems admit solutions. A numerical scheme has been
implemented to calculate these special inclusions discussed above (figures 1–8).
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Note that, in view of equation (1.1), the preceding arguments can be extended
to tensors

ðL0Þpiq j Z ðGÞrpðGÞsqðLÞikðLÞjlðLÞrksl ;

by a linear transformation

x/x 0 ZLK1x and v/v 0 ZGK1v; ð4:1Þ
where G;L2R

n!n are invertible and L is of form (1.3). Further, through a
refined calculation on the inverse of the matrix (L)piqj(k)i(k)j, we can extend the
results to tensors that satisfy (mZn)

ðLÞpiq jðkÞiðkÞjðkÞq Z kjkj2ðkÞp ck2R
n; ð4:2Þ
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for some kO0, see details in Liu et al. (submitted). The linear transformation (4.1)
can be again applied to general L of form (4.2) and further extend the applicability
of the preceding arguments. The reader is invited to formulate the precise
statements corresponding to theorems 1.2–1.5 for tensors L of these forms.

Finally, a few remarks are in order regarding other applications of the
variational inequality (2.7). First of all, in view of the applications of the Eshelby
solution (1957) for an ellipsoid in the theories of micromechanics, composites and
fracture mechanics, by theorem 1.4 we immediately extend these applications to
multiply connected E-inclusions as shown in figures 2 and 3 if the eigenstress is
dilatational and the matrix phase is isotropic. For instance, we can show that a
solution of the homogeneous Eshelby inclusion problem (1.1) also solves the
corresponding inhomogeneous Eshelby inclusion problem (Eshelby 1957; Liu
et al. submitted). By a similar argument as in Roitburd (1986), if the interfacial
energy is neglected, we can show that these multiply connected E-inclusions,
together with ellipsoids, are equilibrium shapes of inhomogeneous precipitates in
alloys under some hypotheses on the mismatch strain and material properties.
Moreover, if the problem of reducing the stress concentration around a hole in an
elastic body is considered, depending on the external loading, boundary
conditions and material properties, the variational inequality (2.7) with
appropriate obstacles can be used to determine the optimal shapes of the holes
with least stress concentration factors (Lipton 2005). A closely related property
of these optimal shapes in the context of composites, as shown in Liu et al.
(submitted), is that they attain the optimal Hashin–Shtrikman bounds. In
conclusion, as illustrated by the solutions to the Eshelby conjectures, the
consideration of the variational inequality (2.7) can be useful in solving many
physical problems and in particular those problems in which the shapes of the
inclusions play an important role.

The author gratefully acknowledges the financial support of the US Office of Naval Research
through the MURI grant N00014-06-1-0730.
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