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In this paper we study the existence and uniqueness of inter-
facial waves in account of surface elasticity at the interface.
A sufficient condition for the existence and uniqueness of a
subsonic interfacial wave between two elastic half-spaces is
obtained for general anisotropic materials. Further, we ex-
plicitly calculate the dispersion relations of interfacial waves
for interfaces between two solids and solid & fluid and para-
metrically study the effects of surface elasticity on the dis-
persion relations. We observe that the dispersion relations
of interfacial waves are nonlinear at the presence of surface
elasticity and depend on surface elastic properties. This non-
linear feature can be used for probing the bulk and surface
properties by acoustic measurements and designing waves
guides or filters.
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1 Introduction
Interfacial waves refer to localized wave modes that

propagate along the interface of two materials and decay
away from the interface. The dispersion relation of inter-
facial waves is important for probing material properties and
designing wave guides for a number of applications. For t-
wo isotropic elastic materials, Stoneley (1924) first derived
explicit solutions of interfacial waves that are subsequently
named as Stoneley waves. Barnett et al. (1985) explored in-
terfacial waves between general anisotropic solids and found
sufficient conditions for the existence and uniqueness of sub-
sonic interfacial waves in terms of surface impedance tensor.

At the advent of modern nanotechnology, it is widely
speculated that elastic energy associated with a surface, or
surface elasticity, will play an important role in determining
the size-dependent behaviors at the length scale of submicron

and below (Sharma et al., 2003; Miller and Shenoy, 2000). A
widely used model of surface elasticity has been established
by Gurtin and Murdoch (1975, 1976) where surface/interface
is idealized as a two-dimensional body Γ with elastic stored
energy postulated as

Us[y] =
∫

Γ

Ws(∇y)ds, (1)

where Ws : R3×3 → R is the surface elastic energy density
and y : R3 → R3 is the deformation. For a homogeneous
continuum body the above surface elastic energy may be re-
garded as the next order of approximation of total internal
energy beyond the bulk elastic energy. This is to some extent
justified from the fundamental atomistic models in Blanc et
al. (2002) and the elastic properties of surface have been cal-
culated according to this viewpoint (Shenoy, 2005; Mi et al.,
2008). From this standing point, it is anticipated that surface
elasticity is particularly important for small bodies.

Surface elasticity may emerge from other considera-
tions. First of all, as noticed in Mohammadi et al. (2013), an
elastic surface may arise solely from the roughness of sur-
faces/interfaces and bulk elasticity even if the pristine flat
surface is assumed to be free of surface elasticity. Also,
for some heterogeneous structures, e.g., a sandwich struc-
ture with soft thick core and stiff thin face plates (Liu and
Bhattacharya, 2009), the overall structure may be well mod-
elled by a single elastic body with elastic surfaces. For these
problems, it is worth noticing that the significance of “sur-
face elasticity” prevails at all length scales instead of being
limited to small bodies, which, consequently, broadens the
applications of the model of surface elasticity and the results
presented in this paper.

The ramifications of surface elasticity have been exam-
ined in several contexts, e.g., the effective bulk stress-strain



Fig. 1. An elastic interface between two half spaces.

relation due to nano-inclusions (Sharma et al., 2003; Duan
et al., 2005), the sensing and vibration of nano-beams and
plates (Miller and Shenoy, 2000; Bar On et al., 2010), wave
in thin film attached on substrate (Steigmann and Ogden,
2007), and the free surface waves (Murdoch, 1976). The
interested reader is also referred to Steigmann and Ogden
(1997) for a generalization of surface elasticity incorporating
curvature dependence of energy, Huang and Sun (2007) for
further clarification of the formulation, and Altenbach et al.
(2011) for a mathematical proof of existence and uniqueness
theorem of boundary value problems with surface elasticity.

In this paper we study interfacial waves at the presence
of surface elasticity. Since the energy of interfacial waves
concentrates around the interface, we anticipate surface elas-
ticity may have a significant effect on the dispersion relation
of interfacial waves. In addition, it is of fundamental inter-
est to prove whether an interfacial wave exists, and if so, is
unique for a given frequency. These problems will be ad-
dressed by techniques developed in the study of classic free
surface waves and interfacial waves in the absence of surface
elasticity (Rayleigh 1885; Stoneley, 1924; Chadwick, 1977;
Barnett et al., 1985). In particular, we obtain a similar exis-
tence and uniqueness theorem for subsonic interfacial waves
between general anisotropic solids and interfaces. In addi-
tion, we explicitly calculate the dispersion relations of inter-
facial waves at the presence of surface elasticity for isotropic
materials. A critical observation lies in that the interfacial
wave is now dispersive and depends on the surface elastic
properties. This distinguishing characteristics may be used to
probe both the bulk and surface properties by acoustic mea-
surements (McSkimin, 1964; Aussel and Monchalin, 1989;
Every and Sachse, 1990; Chu and Rokhlin 1992). Further,
upon specializing the bulk properties to various limits, the
results of this paper can recover the classic interfacial waves
in the absence of surface elasticity and be used to calculate
the interfacial waves between fluid and solid.

The paper is organized as follows. We formulate the
problem for interfacial waves with surface elasticity in sec-
tion 2. In section 3 we present a sufficient condition for
the existence of interfacial waves in terms of the interface
impedance matrix. In section 3.2, by numerical calculations
we analyze dependance of the existence and wave speed of
interfacial waves on bulk and interface elastic constants. We
conclude and provide an outlook of future work in section 4.

2 Problem formulation
Consider an infinite elastic medium with an interface

Γ = {(x1,x2,x3) : x3 = 0} between two half spaces: Ω1 =
{(x1,x2,x3)|x3 > 0} and Ω2 = {(x1,x2,x3)|x3 < 0} (see Fig.
1). The bulk elastic properties of the two half spaces are de-
scribed by the bulk stiffness tensors:

C(x) = Cα if x ∈Ωα , α = 1,2,

where the fourth-order tensor Cα (α = 1,2) satisfy the usual
major and minor symmetries:

(Cα)piq j = (Cα)pi jq = (Cα)q jpi, (2)

and the convexity condition:

A ·Cα A > 0, ∀0 6= A ∈ R3×3
sym . (3)

To account for the elastic effects of the interface Γ, we
model the interface as an elastic massless membrane bond-
ed with the two half spaces without slip. Starting from the
postulation (1) and following the paradigm of classic nonlin-
ear elasticity, upon linearization one can show that the above
postulation implies the following surface stress-strain rela-
tion:

σ s = Cs∇u+σ
0
s , (4)

where Cs : R3×3→R3×3 is the fourth-order surface stiffness
tensor satisfying the similar major and minor symmetries in
(2) as a bulk stiffness tensor, u is the displacement, and σ0

s
is the residual surface stress. We remark that since interfaces
are of two dimensions, the surface elastic energy shall de-
pend only on the stretching within the interface. Therefore,
surface strain, surface stress and surface stiffness tensor “live
only on the surface” in the sense that

σ s, σ
0
s ∈M and CsM⊥ = 0 ∀M⊥ ∈M⊥,

where M = {M ∈ R3×3 : Mn = 0, MT n = 0}, n is the unit
normal on the surface Γ, and M⊥ = {M⊥ ∈R3×3 : M⊥ ·M =
0, ∀M ∈M}.

The elastodynamic equation for small deformation in the
two bulk half spaces is standard and given by

{
div[C1∇u(x, t)] = ρ1

∂ 2

∂ t2 u(x, t) for x3 > 0,
div[C2∇u(x, t)] = ρ2

∂ 2

∂ t2 u(x, t) for x3 < 0,
(5)

where ρα (α = 1,2) denote the mass densities. Further, the
balance of linear momentum for any subsurface on Γ implies

divs[Cs∇u(x, t)+σ0]

+[C1∇u(x+, t)−C2∇u(x−, t)]e3 = 0 ∀ x ∈ Γ,
(6)



where divs denotes the surface divergence (Gurtin and Mur-
doch, 1975), and x+ (x−) denotes the boundary value ap-
proached from the top (bottom) of the interface. We remark
that the above equation (6) can be regarded as the generalized
Young-Laplace equation for the solid elastic surface Γ.

We define localized interfacial waves as solutions to (5)
and (6) satisfying the boundary conditions:

u(x, t)→ 0 as x3→±∞. (7)

The presence of heterogeneity and the elastic interface Γ

may give rise to interfacial waves that are important for in-
terface characterization and the overall dynamic behaviors
of the body. Below we explore the properties of interfacial
waves propagating along interface between two half-spaces
including the existence, uniqueness and dispersion relations
of interfacial waves.

3 Interfacial waves
3.1 Existence and uniqueness

Without loss of generality we assume the wave propa-
gates in e1-direction. By translational invariance we seek a
solution to (5)-(6) that can be written as

u(x, t) = û(kx3)ei(kx1−ωt), (8)

where û : R→ C3 describes the mode shape along e3-axis,
k > 0 is the wave number along e1-axis, and ω > 0 is the
frequency. Let y = kx3. Inserting the above equation into (5)
and (6) we obtain



(ρ1v2I−Q1)û(y)+ i(R1 +(R1)
T )û′(y)

+T1û′′(y) = 0 for x3 > 0,
(ρ2v2I−Q2)û(y)+ i(R2 +(R2)

T )û′(y)
+T2û′′(y) = 0 for x3 < 0,

−kQsû(0)+i(RT
1 −RT

2 )û(0)
+T1û′(0+)−T2û′(0−) = 0,

(9)

where v = ω/k is the wave speed, ( )′ = d
dy , and (α = 1,2)

(Rα)pq = (Cα)p1q3, (Tα)pq = (Cα)p3q3,

(Qα)pq = (Cα)p1q1, (Qs)pq = (Cs)p1q1.

From symmetry condition (2) and convexity condition (3), it
is clear that Qα , Tα , and Qs are all 3×3 symmetric matrices
and that Qα and Tα are all positive definite and invertible
for α = 1,2. By the theory of ordinary differential equations
(Coddington & Levinson; 1984), a general solution to (9)1,2
is given by

û(kx3) =

{
e−x3kE1 û1 for x3 > 0,
ex3kE2 û2 for x3 < 0

(10)

for some E1,E2 ∈ C3×3 and vector û1, û2 ∈ C3. From the
displacement continuity at x3 = 0, we clearly have û1 = û2.
To satisfy (9)1,2, it is sufficient to have

{
T1E2

1− i[R1 +(R1)
T )]E1 +ρ1v2I−Q1 = 0,

T2E2
2 + i[R2 +(R2)

T )]E2 +ρ2v2I−Q2 = 0.
(11)

Moreover, by (10) equation (9)3 can be rewritten as

[−kQs + i(RT
1 −RT

2 )− (T1E1 +T2E2)]û1 = 0. (12)

Further, in account of (7) we shall require that

eig(E1),eig(E2)⊂ C+, (13)

where eig(·) denotes the set of eigenvalues, and C+ is the set
of all complex numbers with positive real parts.

We remark that equations in (11) can be identified as
algebraic Riccati equations. To solve for Eα , we assume that
λα ∈C and aα ∈C3 are a pair of eigenvalue and eigenvector
of Eα :

Eα aα = λα aα , aα 6= 0.

Operating the left hand sides of (11) on the eigenvector a we
find that

[Tα λ
2
α +(−1)α i(Rα +RT

α)λ +ρv2I−Qα ]aα = 0. (14)

Taking complex conjugate of (14), we observe that if
(λα ,aα) satisfies (14), so does (−λ̄α , āα).

The above equation (14) can be identified as a general-
ized eigenvalue-eigenvector problem. Clearly, the eigenval-
ues λα can be determined as the roots of the polynomial:

Pα(λ ,v) :=det[Tα λ
2 +(−1)α i(Rα +RT

α)λ

+ρv2I−Qα ]
(15)

whereas the associated eigenvectors aα can be obtained as
nonzero solutions to (14). In a generic case, we shall be
able to find six eigenvalue-eigenvector pairs (λ i

α ,ai
α) (i =

1, · · · ,6) for a given v > 0. Let Aα = [ai1
α ;ai2

α ;ai3
α ] ∈ C3×3 be

the matrix formed by three of the (column) eigenvectors and
Dα = diag[λ i1

α ,λ i2
α ,λ

i3
α ] be the diagonal matrix formed by the

corresponding eigenvalues. If detAα 6= 0, then a solution to
(11)α is given by

Eα = Aα Dα A−1
α .

For interfacial waves, we shall focus on solutions to (11)
that satisfy (13). Since the eigenvalues of (14) are symmetric



about the imaginary axis, a solution Eα ∈ C3×3 to (11) sat-
isfying (13) cannot be constructed by the above procedure if
Pα(λ ,v) has a pure imaginary solution. This motivates us to
introduce the limiting speed:

v̂α := inf{v > 0 : Pα(λ ,v) has a pure imaginary root}.

The reader is referred to Chadwick and Smith (1977, p. 339)
for a neat geometrical interpretation of the limiting speed v̂α

on the slowness section on the plane spanned by {e1,e3}. Let

v̂ = min{v̂1, v̂2}.

In analogy with free surface waves, we refer to interfacial
waves as subsonic if the phase speed v < v̂, and superson-
ic if otherwise. Following Barnett & Lothe(1985) and Fu
& Mielke (2002), it can be shown that if 0 ≤ v < v̂, both
equations in (11) admit unique solutions Eα(v) (α = 1,2)
satisfying (13). We can therefore define two new quantities

{
M1(v) = T1E1(v)− iRT

1 ,

M2(v) = T2E2(v)+ iRT
2 ,

(16)

which are known as surface impedance matrices. Replacing
Eα by Mα in (11), we find that Mα (α = 1,2) satisfy the
standard algebraic Riccati equations:

{
(M1− iRT

1 )T
−1
1 (M1 + iRT

1 )−Q1 +ρ1v2I = 0,
(M2 + iRT

2 )T
−1
2 (M2− iRT

2 )−Q2 +ρ2v2I = 0.
(17)

We define the interface impedance matrix as

Z(v) = M1(v)+M2(v)+ kQs. (18)

Then equation (12) admits a nonzero solution û1 if and only
if

detZ(v) = 0. (19)

We now introduce a few useful properties of the inter-
face impedance matrix that follow from Barnett & Lothe
(1985) and Fu & Mielke (2002).

Lemma 1. Assume that Qs is positive semi-definite. Then
the interface impedance matrix Z(v) defined by (18) satisfies
that

(i) Z(v) is Hermitian for v ∈ (0, v̂);
(ii) Z(0) is positive definite;

(iii) d
dv Z(v) is negative definite for v ∈ (0, v̂), i.e., every
eigenvalue of Z(v) is monotonically decreasing as a
function of v;

(iv) a ·Z(v)a≥ 0, ∀ a ∈ R3 and v ∈ (0, v̂).

Due to property (ii) and (iii), existence of an interfacial
wave with phase speed v0 < v̂ satisfying (19) requires that
Z(v̂−) has at least one negative eigenvalue. In addition, the
matrix Z(v̂−) can have at most one negative eigenvalue since
one could always find a vector a ∈R3 violating property (iv)
if otherwise (Barnett & Lothe,1985). So in order for the in-
terfacial wave to exist, eigenvalues of Z(v̂−) should meet
either of these two situations: (1) two positive and a nega-
tive eigenvalues; (2) one positive, one negative and one zero
eigenvalues. In conclusion, we have the following existence
theorem for subsonic interfacial waves:

Theorem 2. Assume that the matrix Qs is positive semi-
definite. If detZ(v̂−) < 0 or (tr Z(v̂−))2− tr Z2(v̂−) < 0,
there exist a unique subsonic interfacial wave. The phase
speed v = ω/k ∈ (0, v̂) is determined by

detZ(v) = 0.

We remark that the positive semi-definiteness of Qs in
the above theorem is a strong assumption. In fact, the above
theorem applies as long as Qs is such that Z(0) is positive
definite. Therefore, the subsonic interfacial wave is unique
for small k since M1(0) and M2(0) are both positive definite
(Fu & Mielke, 2002).

3.2 Explicit solutions
An explicit solution (if exist) can be found when the in-

terfacial wave is polarized in a symmetry plane (x1-x3 plane
say) of both solids. A trial solution for this problem can be
written as

u(x1,x3, t) =

{
û1 exp(−ikp1x3)exp(ikx1−ωt) for x3 > 0,
û2 exp(ikp2x3)exp(ikx1−ωt) for x3 < 0.

Inserting the above trial solution into (5) one can find a quar-
tic equation for pα (α = 1 or 2). For each half-space two
pairs of complex conjugate solutions can be found from the
quartic equation. Destrade and Fu (2006) have obtained an-
alytic solutions of the quartic equations in terms of v and
implemented a numerical method for calculating the interfa-
cial wave speed from the condition at the interface without
surface elasticity.

In particular, if both half-spaces are isotropic, by sym-
metry we observe that û1 ·e2 = û2 ·e2 = 0, and subsequently,
omit components associated with e2-direction in matrices of
(11) and (12). Removing trivial components associated e2-
direction and with an abuse of notation, we find the material
tensors defined by (10) as

Qα =

[
2µα +λα 0

0 µα

]
, Rα =

[
0 λα

µα 0

]
,

Tα =

[
µα 0
0 2µα +λα

]
, Qs =

[
Qs 0
0 0

]
,

(20)



where Qs = (Qs)11 = (Cs)1111 is the surface elastic modu-
lus. Since the surface impedance matrix is Hermitian, we
can write it as

M1 =

[ 1m1
1m3 + i 1m4

1m3− i 1m4
1m2

]
,

M2 =

[ 2m1
2m3− i 2m4

2m3 + i 2m4
2m2

]
,

(21)

where α m j(α = 1,2; j = 1, · · · ,4)∈R. Solving (17) for Mα ,
we find that (Fu and Mielke, 2002)

α m1 =

√
µα(2µα +λα −ρα v2)− µα

2µα +λα

(
λα +µα

1+ γα

)2,

α m2 = γα

2µα +λα

µα

α m1,
α m3 = 0, α m4 =

γα λα −µα

1+ γα

,

where

γα =

√
µα(µα −ρα v2)

(2µα +λα)(2µα +λα −ρα v2)
, α = 1,2.

Then equation (19) implies that

(1m1 +
2m1 + kQs)(

1m2 +
2m2)

−(1m3 +
2m3)

2−(1m4 +
2m4)

2 = 0.
(22)

Now let

vαl =

(
λα +2µα

ρα

) 1
2
, vαt =

(
µα

ρα

) 1
2

(23)

be the longitudinal bulk wave speed and transverse bulk wave
(shear wave) speed (α = 1,2), respectively, and

qαl =

√
1−
(

v
vαl

)2

, qαt =

√
1−
(

v
vαt

)2

. (24)

By some tedious algebraic manipulation, equation (22) can
be rewritten as

((1−q2lq2t)ρ
2
1 − (q1tq2l +q1lq2t +2)ρ2ρ1

+(1−q1lq1t)ρ
2
2 )v

4 +4((q2lq2t −1)ρ1

+(1−q1lq1t)ρ2)(ρ1v2
1t −ρ2v2

2t)v
2

+4(q1lq1t −1)(q2lq2t −1)(ρ1v2
1t −ρ2v2

2t)
2

+ kQs((q2lq2t −1)ρ1 +(q1lq1t −1)ρ2)v2 = 0,

(25)

which determines the interfacial wave speed. Upon inspec-
tion it is clear that if the surface elasticity is ignored (Qs = 0),

the solution of v to the above equation is the wave speed of
the classic Stoneley wave (Stoneley, 1924) and independent
of the wave number k. At the presence of surface elasticity
(Qs > 0), a generic solution to the above equation clearly de-
pends on k, meaning that the interfacial wave is dispersive.
We also notice that a solution to equation (25) may not exist.

We now solve (25) numerically and results of interfa-
cial wave speed versus frequency are shown in Fig. 2-4. In
Fig. 2 the impact of surface elastic modulus is studied for t-
wo bulk materials with ρ1 = 500Kg/m3, ρ2 = 10000Kg/m3,
v1t = v2t = 1000m/s, v1l = v2l = 1450m/s (cf., (23)). Fig-
ure 2 shows that the wave speed v monotonically increases
(resp. decreases) with respect to frequency ω for positive
(resp. negative) Qs. However, interfacial wave speed v be-
comes independent of Qs at long wavelength limit (ω → 0).
In Fig. 3 we show the dependence of interfacial waves on
bulk densities for given surface elastic modulus of Qs =
10000J/m2 whereas the bulk wave speeds are specified as
v1t = v2t = 1000m/s, v1l = v2l = 1450m/s. We remark that
the surface elastic modulus Qs = 10000J/m2, though order-
s of magnitude larger than pristine surface of typical solid
crystals, is realistic and physical for composite structures,
e.g., a sandwich plate with thick soft core and stiff thin face
plates. Curves with the same density ratio ρ1 : ρ2 = 1 : 20 in-
tersects at ω = 0, indicating that the wave speed at long wave
length limit depends only on the ratio rather than the values
of densities. This is in fact a property of the classic Stoneley
waves. On the other hand, at any nonzero frequency larger
densities correspond to greater interfacial wave speed. We al-
so observe that interfacial waves are less likely to exist as the
ratio gets closer to 1. Figure 4 shows the dependence of inter-
facial wave speed on bulk wave speeds for Qs = 10000J/m2,
ρ1 = 500Kg/m3, ρ2 = 10000Kg/m3, v1t = v2t = 1000m/s,
v1l = v2l . We observe that smaller difference between bulk
longitudinal speeds and bulk shear speeds results in lower
interfacial wave speed at the long wavelength limit, and also
makes the interfacial wave speed depend more sensitively on
frequency.

Further, we can study interfacial waves propagating a-
long solid/fluid and two fluids interfaces in present frame-
work. Assume that medium 2 is an inviscid fluid. Since the
fluid cannot sustain shear force, we set the shear modulus
to zero (µ2 = 0) for fluid phase. Then the condition at the
interface shall be written as

{
û2 ·n− û1 ·n = 0,
[M1(ν)+ kQs]û1 =−M2(ν)û2 = pn,

(26)

where p is the pressure. By (21) components of M2(v) are
given by

2m1 =
2m3 =

2m4 = 0, 2m2 = ρ2v2

√
λ2

λ2−ρ2v2 . (27)
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Fig. 2. Dependence of interfacial wave speed on surface elastic
modulus Qs(J/m2). v is normalized by the corresponding wave
speed v0 for Qs = 0. (ρ1 = 500kg/m3, ρ2 = 10000kg/m3,
v1t = v2t = 1000m/s, and v1l = v2l = 1450m/s)

Inserting (21) and (27) into (26) we have

(1m1 + kQs)(
1m2 +

2m2)− 1m2
4 = 0. (28)

Substituting (23) and (24) into above equation (28) we have
the secular equation interns of bulk wave speeds:

−2ρ1v2
1tv

2
1l [ρ2(q1l +q1t)+ρ1q2l ]v4

+ρ1v2
1tv

2
1l(v

2
1t + v2

1l)[ρ1q2l−ρ1q1tq1lq2l +ρ2(q1l +q1t)]v2

+4ρ
2
1 v4

1tv
2
1l(v

2
1l− v2

1t + v2
1tq1tq1l)q2l

+ kQs(v2
1tqqt + v2

1lq1l)(ρ1v2
1tv

2
1l(q1l +q1t)q1tq2l

+ρ2v2(v2
1tq1t + v2

1lq1l)) = 0.

(29)

By equation (29) we calculate the interfacial wave speed ver-
sus frequency for Aluminum/Water interface with surface e-
lasticity (ρ1 = 2700kg/m3, v1t = 3040m/s, v1l = 6420m/s,
ρ2 = 1000kg/m3, vwater = 1484m/s and Qs = 100000J/m2).
From Fig. 5, we observe that at the presence of surface e-
lasticity the interfacial wave speed decreases as frequency
increases. Also, we remark that interfacial wave speed is
lower than the acoustic wave speed in water vwater and that
the interfacial waves implied by (28) decay only in the solid
but not the fluid phase (since we have ignored the viscosity).

4 Conclusion
In this paper we study interfacial waves that propagate at

the interface between two half spaces and decay away from
the interface. A sufficient condition for the existence and
uniqueness of subsonic interfacial waves is obtained for gen-
eral anisotropic half spaces. As examples, we present the ex-
plicit secular equation for determining the dispersion relation
of subsonic interfacial waves for two isotropic half spaces
with an isotropic interface. The secular equation can also be
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used to determine interfacial waves at the interfaces between
solid and fluid. The important effects of surface elasticity on
the dispersion relation of interfacial waves are then paramet-
rically studied by explicitly solving the secular equation. In
particular, we notice that the interfacial waves are now dis-
persive, strongly frequency-dependent, and surface-property
dependent. We anticipate these fundamental results may
have important applications in modeling dynamic behaviors
of sandwich structures, designing acoustic wave guides and
filters, and probing surface and bulk properties of materials
among others.
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Fig. 5. Dispersion relation of interfacial wave at the interface of Alu-
minum (ρ1 = 2700kg/m3, v1t = 3040m/s, and v1l = 6420m/s)
and water (ρ2 = 1000kg/m3 and vwater = 1484m/s ). Here sur-
face elastic parameter is Qs = 100000J/m2 and interfacial wave
speed v is normalized by speed of sound in water vwater.

References
[1] Stoneley, R. 1924 Elastic waves at the surface of separa-

tion of two solids. Proc. R. Soc. Lond. A 106, 416–428.
[2] Barnett, D. M., Lothe, J., Gavazza, S. D. & Musgrave,

M. J. P. 1985 Considerations of the existence of interfa-
cial (stoneley) waves in bonded anisotropic elastic half-
spaces. Proc. R. Soc. Lond. A 402, 153–166.

[3] Sharma, P., Ganti, S. & Bhate, N. 2003 Effect of
surfaces on the size-dependent elastic state of nano-
inhomogeneities. Appl. Phys. Lett. 82, 535–537.

[4] Miller, R. E. & Shenoy, V. B. 2000 Size dependent elas-
tic properties of structural elements. Nanotechnology 11,
139–147.

[5] Gurtin, M. E. & Murdoch, A. I. 1975 A continuum the-
ory of elastic material surfaces. Arch. Rat. Mech. Anal.
54, 291–323.

[6] Gurtin, M. E. & Murdoch, A. I. 1976 Effect of surface
stress on wave propagation in solids. J. Appl. Phys. 47,
4414–4421.

[7] Blanc, X., Le Bris, C. & Lions, P. L. 2002 From molecu-
lar models to continuum mechanics. Arch. Ration. Mech.
Anal. 164, 341–381.

[8] Shenoy, V. B. 2005 Atomistic calculations of elastic
properties of metallic fcc crystal surfaces. Phys. Rev. B
71, 094104.

[9] Mi, C., Jun, S. & Kouris, D. A. 2008 Atomistic calcula-
tions of interface elastic properties in noncoherent metal-
lic bilayers. Phys. Rev. B 77, 075425.

[10] Mohammadi, P., Liu, L. P., Sharma, P. & Kukta, R. V.
2013 Surface energy, elasticity and the homogenization
of rough surfaces. J. Mech. Phys. Solids 61, 325–340.

[11] Liu, L. P. & Bhattacharya, K. 2009 Wave propagation
in a sandwich structure. Int. J. Solids Struct. 46, 3290–
3300.

[12] Duan, H. L., Wang, J., Huang, Z. P. & Karihaloo, B. L.

2005 Size-dependant effective elastic constants of solids
containing nano-inhomogeneities with interface stress. J.
Mech. Phys. Solids 53, 1574–1596.

[13] Bar On, B., Altus, E. & Tadmor, E. B. 2010 Surface
effects in non-uniform nanobeams: continuum vs. atom-
istic modeling. Int. J. Solids Struct. 47, 1243–1252.

[14] Murdoch, A. I. 1976 The propagation of surface waves
in bodies with material boundaries. J.Mech.Phys.Solids
24, 137–146.

[15] Steigmann, D. J. & Ogden, R. W. 2007 Surface waves
supported by thin-film/substrate interactions. IMA J. Ap-
pl. Math. 72, 730–747.

[16] Steigmann, D. J. & Ogden, R. W. 1997 Elastic surface-
substrate interactions. Proc. R. Soc. A 455, 437–474.

[17] Huang, Z. P. & Sun, L. 2007 Size-dependent effective
properties of a heterogeneous material with interface en-
ergy effect: from finite deformation theory to infinitesi-
mal strain analysis. Acta Mech. 190, 151–163.

[18] Altenbach, H., Eremeyev, V. A. & Lebedev, L. P. 2011
On the spectrum and stiffness of an elastic body with
surface stresses. ZAMM 91, 699–710.

[19] Rayleigh, L. 1885 On waves propagated along the
plane surface of an elastic solid. Proc. London Math.
Soc. s1-17, 4–11.

[20] Chadwick, P. & Smith, G. D. 1977 Foundations of the
theory of surface waves in anisotropic elastic materials.
Adv. Appl. Mech. 17, 303–376.

[21] Barnett, D. M. & Lothe, J. 1985 Free surface (rayleigh)
waves in anisotropic elastic half-spaces: the surface
impedance method. Proc. R. Soc. Lond. A 402, 135–152.

[22] McSkimin, H. J. 1964 Ultrasonic methods for measur-
ing the mechanical properties of liquids and solids. In
Physical Acoustics(ed. W. P. Mason), vol. 1. New York:
Academic.

[23] Aussel, J. D. & Monchalin, J. P. 1989 Precision laser-
ultrasonic velocity measurement and elastic constant de-
termination. Ultrasonics 27, 165–177.

[24] Every, A. G. & Sachse, W. 1990 Determination of the e-
lastic constants of anisotropic solids from acoustic-wave
group-velocity measurements. Phys. Rev. B 42, 8196–
8205.

[25] Chu, Y. C. & Rokhlin, S. I. 1992 Determination
of macro- and micromechanical and interfacial elastic
properties of composites from ultrasonic data. J. Acoust.
Soc. Am. 92, 920–931.

[26] Coddington, E. A. & Levinson, N. 1984 Theory of Or-
dinary Differential Equations. Krieger Pub Co.

[27] Hu, L. X., Liu, L. P. & Bhattacharya, K. 2011 Exis-
tence of surface waves and band gaps in periodic hetero-
geneous half-spaces. J. Elast. 107, 65–79.

[28] Fu, Y. B. & Mielke, A. 2002 A new identity for the
surface-impedance matrix and its application to the de-
termination of surface-wave speeds. Proc. R. Soc. Lond.
A 458, 2523–2543.

[29] Destrade, M. & Fu, Y.B. 2006 The speed of interfacial
waves polarized in a symmetry plane. Int. J. Eng. Sci. 44,
26–36


