Linear transformations

Throughout this note, V, W, and Z are vector spaces over the same field F.

Definition. A linear transformation from V to W is a function $T : V \to W$ that preserves linear combinations:

$$T(c_1 \alpha_1 + c_2 \alpha_2) = c_1 T(\alpha_1) + c_2 T(\alpha_2) \quad \text{for all } \alpha_1, \alpha_2 \in V \text{ and } c_1, c_2 \in F.$$

We usually perform two separate tests:

T should preserve vector-addition: $T(\alpha + \beta) = T(\alpha) + T(\beta)$ for all $\alpha, \beta \in V$, and T should preserve scalar multiplication: $T(c \cdot \alpha) = c \cdot T(\alpha)$ for all $\alpha \in V$ and $c \in F$.

Theorem 1 (Preservation of subspaces). Let $T : V \to W$ be linear, and let A be a subspace of V. Then $T(A) := \{T(x) : x \in A\}$ is a subspace of W.

Let B be a subspace of W. Then $T^{-1}(B) := \{x \in V : T(x) \in B\}$ is a subspace of V.

Definition. The range of T is the set $R(T) = \text{Range}(T) = \text{Im}(T) = \{T(x) : x \in V\}$. The rank of T is the dimension of the range of T. The null space (or kernel) of T is the set $N(T) = \text{Null}(T) = \text{Ker}(T) = \{x \in V : T(x) = 0\}$. The nullity of T is the dimension of $N(T)$.

(In view of the theorem above, the range $R(T) = T(V)$ is a subspace of W and the null space $N(T) = T^{-1}(\{0\})$ is a subspace of V, so they have dimensions.)

Here are some easy but important facts. For every linear transformation $T : V \to W$,

- $T(0) = 0$ (note the two different 0-vectors: one is in V, one in W).
- Spanning sets of V (e.g., bases of V) are mapped into spanning sets of $R(T)$.
 Hence rank(T) \leq dim(V). (Clearly, rank(T) \leq dim(W) also holds.)
- In general, for any subspace U of V, spanning sets of U are mapped into spanning sets of $T(U)$. Hence dim($T(U)$) \leq dim(U): “linear transformations cannot increase dimensions!”
- T can be defined arbitrarily on a basis of V, and then it is uniquely determined on the whole domain V. Consequently, if T and T' are linear transformations from V to W, and they agree on a basis of V, then they agree everywhere on V.
- If $f : V \to W$ and $g : W \to Z$ are linear transformations, their composition $g \circ f : V \to Z$, defined as $(g \circ f)(\alpha) = g(f(\alpha))$ ($\alpha \in V$), is also a linear transformation.

The Fundamental Theorem of Linear Algebra

Theorem 2 (FTLA). Let T be a linear transformation from V to W. Then V has a basis that can be written as $A \cup B$, where A and B are disjoint, A is a basis for the null space $N(T)$, and $T(B)$ is a basis for the range $R(T)$. Hence, if V is finite-dimensional, then $\text{rank}(T) + \text{nullity}(T) = \text{dim}(V)$.

Theorem 3 (FTLA – matrix form). Let M be an $m \times n$ matrix over the field F. The row space of M is orthogonal to the null space of M (of course), and their dimensions add up to n. The row space and the column space have the same dimension (the rank of M).
Invertible linear transformations

Throughout this page, \(T \) is a linear transformation from \(V \) to \(W \).

Definition. A function \(f : V \to W \) is invertible if there exists a function \(g : W \to V \) such that \(g \circ f = I_V \) and \(f \circ g = I_W \). (\(I_V \) is the identity transformation on \(V \).)

It is easy to see that \(f \) is invertible if and only if it is one-to-one and onto (bijection). It is also easy to see that when such \(g \) exists, it is unique. We usually write \(f^{-1} \) for this unique inverse \(g \). When \(f \) is an invertible linear transformation, then so is \(f^{-1} \) (from \(W \) to \(V \)).

Definition. The linear transformation \(T : V \to W \) is non-singular if \(\text{Null}(T) = \{0\} \).

(That is, \(\text{nullity}(T) = 0 \), or \(\alpha \neq 0 \) implies \(T(\alpha) \neq 0 \), or \(T(\alpha) = 0 \) implies \(\alpha = 0 \).)

Theorem 4. Let \(T : V \to W \) be a linear transformation.

The Following Are Equivalent

- \(T \) is non-singular.
- \(T \) is one-to-one.
- \(T \) maps linearly independent vectors into linearly independent vectors.
- For every finite-dimensional subspace \(U \) of \(V \), \(\dim(T(U)) = \dim(U) \).

Theorem 5. Let \(T : V \to W \) be a linear transformation, and assume that \(V \) has a basis.

The Following Are Equivalent

- \(T \) is one-to-one.
- \(T \) maps every basis into linearly independent vectors.
- \(V \) has a basis which \(T \) maps into linearly independent vectors.

Theorem 6. If \(\dim(V) < \infty \), then \(T \) is one-to-one if and only if \(\text{rank}(T) = \dim(V) \).

If \(\dim(W) < \infty \), then \(T \) is onto if and only if \(\text{rank}(T) = \dim(W) \).

Corollary. Let \(V \) and \(W \) be finite-dimensional, and assume \(\dim(V) = \dim(W) \).

The Following Are Equivalent

- \(T \) is one-to-one.
- \(T \) is onto.
- \(T \) is invertible.
- \(T \) maps some basis of \(V \) into a basis of \(W \).
- \(T \) maps every basis of \(V \) into a basis of \(W \).

Both assumptions in the corollary are important. Without them, the equivalences may be false even in the case \(V = W \) (\(T \) is a linear operator on \(V \)), as the following example shows:

Example: Let \(V = W = F^N = \mathcal{F}(\mathbb{N}, F) \), the space of all \(F \)-sequences. Let \(\text{LS} \) and \(\text{RS} \) be the left-shift and right-shift operators on \(V \):

\[
\text{LS}(x_1, x_2, \ldots) = (x_2, x_3, \ldots), \quad \text{and} \quad \text{RS}(x_1, x_2, x_3, \ldots) = (0, x_1, x_2, \ldots).
\]

Clearly, \(\text{LS} \) is onto but not one-to-one, while \(\text{RS} \) is one-to-one but not onto.