Definition 1. Define $\mathbb{Z}[\sqrt{-5}]$ to be the following subset of the complex numbers

$$\mathbb{Z}[\sqrt{-5}] := \{a + bi\sqrt{5} : a, b \in \mathbb{Z}\} \subset \mathbb{C},$$

where $i = \sqrt{-1}$.

1. Prove that $\mathbb{Z}[\sqrt{-5}]$ is a commutative ring with 1. (Hint: Use the fact that it is a subset of the ring \mathbb{C}.)
 Is it an integral domain? Why or why not?

 Remark. We’ll refer to the ring $R = \mathbb{Z}[\sqrt{-5}]$ as R for the purposes of this worksheet. The ring R is similar in definition to the ring of Gaussian integers ($\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$), but is algebraically very different.

2. Define a function $N : R \to \mathbb{Z}$ by $N(a + bi\sqrt{5}) = a^2 + 5b^2$ (this is the square of the distance from $a + bi\sqrt{5}$ to the origin in the complex plane). Verify that for any $x, y \in R$, we have $N(xy) = N(x) \cdot N(y)$. (Hint: You can do this by explicit calculation, or by remembering things about the geometry of multiplying complex numbers.)

3. Show that if $u \in R$ is a unit, then $N(u) = 1$. Conclude that 1 and -1 are the only units in R.

4. Check that 41 $\in \mathbb{Z}$ is irreducible (i.e. check that 41 is a prime number).

5. Show that 41 $\in R$ is reducible by finding an integer $a \in \mathbb{Z}$ such that $(a + i\sqrt{5})(a - i\sqrt{5}) = 41$.

 Remark. The fact that 41 factors in R even though it is irreducible in the subring \mathbb{Z} may seem strange. But really this is no weirder than the fact that $x^2 + 1$ factors in $\mathbb{C}[x]$ even though it is irreducible in $\mathbb{Q}[x]$.

6. Use the function N to show that 2 and 3 are still irreducible in R.

7. Use the function N to show that $1 + i\sqrt{5}$ and $1 - i\sqrt{5}$ are also irreducible in R.

8. Use the above to give two distinct factorizations of 6 $\in R$ into irreducibles. To be sure that your factorizations are genuinely different, you’ll need to check that none of the irreducibles in question are associates.

 Moral. The Fundamental Theorem of Arithmetic does not carry over to the integral domain R because there can be too many factorizations into irreducibles. That is to say, R is not a unique factorization domain.