Math 351
Workshop 3
Spring 2019

1. Field of Remainders. Consider \(\mathbb{R}[x] \), and let \(\mathbb{R}_1[x] = \{ a + bx : a, b \in \mathbb{R} \} \). Define the map \(\varphi : \mathbb{R}[x] \to \mathbb{R}_1[x] \) by letting \(\varphi(f(x)) \) be the remainder, \(r(x) \), when \(f(x) \) is divided by \(x^2 + 1 \). This is well-defined, and in \(\mathbb{R}_1[x] \), by the division algorithm in \(\mathbb{R}[x] \).

 a) Calculate \(\varphi(3x^2 + 4x + 7) \) and \(\varphi(x^8) \).

 b) Show that \(\varphi(f + g) = \varphi(f) + \varphi(g) \) (i.e. it preserves additive structure).

 c) \(\mathbb{R}_1[x] \) is not closed under the ordinary multiplication of polynomials, so our only hope for \(\varphi \) to be a ring homomorphism is to re-define multiplication in \(\mathbb{R}_1[x] \) to make it a ring in the first place. Find a definition of multiplication in \(\mathbb{R}_1[x] \) that makes \(\varphi \) a ring homomorphism.

 d) What is the kernel of \(\varphi ? \) (ker(\(\varphi \)) := \(\varphi^{-1}(0) = \{ f(x) \in \mathbb{R}[x] \mid \varphi(f) = 0 \} \))

 e) Show that \(\mathbb{R}_1[x] \) forms a field with your chosen multiplication rule.

2. Matrix Rings. Let \(R = \mathbb{Z}[\sqrt{2}] = \{ a + b\sqrt{2} : a, b \in \mathbb{Z} \} \), and define \(S \subseteq M_2(\mathbb{R}) \) by

 \[
 S = \left\{ \begin{pmatrix} a & 2b \\ b & a \end{pmatrix} : a, b \in \mathbb{Z} \right\}.
 \]

 a) Show that \(R \cong S \).

 b) Show that \(R \) is a homomorphic image of \(\mathbb{Z}[x] \).

 c) What is the smallest ring containing \(\mathbb{Z} \) and \(3\sqrt{2} ? \) Call this \(\mathbb{Z}[3\sqrt{2}] \).

 d) Find a ring of matrices isomorphic to \(\mathbb{Z}[3\sqrt{2}] \).

3. Idempotents.

 a) Prove that \(x \mapsto ax \) defines a ring homomorphism from \(\mathbb{Z} \) to \(\mathbb{Z}_n \) if and only if \(a \) is an idempotent in \(\mathbb{Z}_n \).

 b) What other restriction on \(a \) exists for ring homomorphisms from \(\mathbb{Z}_m \) to \(\mathbb{Z}_n \)?

 c) For any \(n \), 0 and 1 are idempotent elements in \(\mathbb{Z}_n \). Show that any other idempotents come in pairs (for example, 4 and 9 are such a pair modulo 12) and that these elements are zero-divisors.

 d) There are no zero-divisors in \(\mathbb{Z}_p \), for \(p \) prime. What conclusion follows for ring homomorphisms from \(\mathbb{Z} \) to \(\mathbb{Z}_p \)?