Part I

Definition: We say a group G acts on a set X if for each $g \in G$ there is an associated operation $g \cdot x : X \to X$ written as $g \cdot x$ sending x to $g \cdot x \in X$ and this operation obeys the following rules:

- $g \cdot (h \cdot x) = (gh) \cdot x$ for all $g, h \in G$ and $x \in X$;
- $e \cdot x = x$ for all $x \in X$ (where e is the identity element of G).

Such an operation is a **group action** of G on X.

1. **Definition:** Let x be an element of a set X acted on by a group G. We define the **stabilizer** of x as $\text{Stab}_x = \{ g \in G \mid g \cdot x = x \} \subseteq G$. We further define the **orbit** of x as $\text{Orb}_x = \{ g \cdot x \mid g \in G \}$.

 (a) Prove that Stab_x is a subgroup of G.

 (b) Prove that $g \cdot x = a \cdot x$ if and only if $g \in a \text{Stab}_x$ (the left coset of Stab_x containing a).

 (c) Prove that $|\text{Orb}_x| = [G : \text{Stab}_x]$.

2. More on orbits:

 (a) Show that if $y \in \text{Orb}_x$, then $\text{Orb}_x = \text{Orb}_y$.

 (b) Show that if $\text{Orb}_x \cap \text{Orb}_y \neq \emptyset$, then $\text{Orb}_x = \text{Orb}_y$ (i.e. orbits are either disjoint or equal).

 (c) The orbits of X are the distinct sets Orb_x which partition X. We define the orbits of X as $\mathcal{O}(X) = \{ \text{Orb}_x \mid x \in X \}$ and observe that X is the disjoint union of the $O \in \mathcal{O}(X)$.

 (d) Observe that $\sum_{O \in \mathcal{O}(X)} |O| = |X|$

3. We wish to show that if G is a group of order p^n where p is a prime and $n \geq 1$, then $Z(G)$ is a non-trivial subgroup (i.e. the center of G has order at least p). To do so, we once again consider G acting on $X = G$ by conjugation (i.e. $g \cdot x = g x g^{-1}$).

 (a) What values can $|\text{Stab}_x|$ take?

 (b) What values can $|\text{Orb}_x|$ take?

 (c) For which x is $|\text{Orb}_x| = 1$?

 (d) Use 2d to conclude that $|Z(G)| > 1$.

4. We wish to show that any group G of order p^2 where p is a prime must be abelian. We assume for the sake of contradiction we have a non-abelian group G of order p^2.

 (a) Show that G has no element of order p^2.

 (b) Show that $|Z(G)| = p$.

 (c) Show that there is some subgroup $H = \langle g \rangle$ generated by $g \in G$ such that $Z(G)H = G$.

 (d) Conclude that $xy = yx$ for all $x, y \in G$, a contradiction.
Part II

1. Let S_n be the symmetric group on n letters, and let $\text{sgn}: S_n \to \mathbb{Z}_2$ be defined by

$$\text{sgn}(\sigma) = \begin{cases}
0 & \text{if } \sigma \text{ is even} \\
1 & \text{if } \sigma \text{ is odd}
\end{cases}$$

(a) Prove that sgn is a surjective homomorphism with kernel A_n.

(b) Let G be a subgroup of S_n. Prove that either $G \leq A_n$ or G consists of half even permutations and half odd permutations.

(c) Prove that any subgroup of S_n containing at least one odd permutation contains a normal subgroup of index two.

2. Let p be the least prime dividing $|G|$. We wish to show that if $H \leq G$ is of index p, then $H \trianglelefteq G$.

(a) (Warm-up) Suppose $[G : H] = 2$. Prove that H is a normal subgroup of G by proving that $gH = Hg$ for all $g \in G$.

(b) The Strong Cayley Theorem is an analogue of the Cayley Theorem. Let G/H be the set of left cosets of H (note: G/H might not be a group if H is not a normal subgroup). Show that G acts naturally via left multiplication on G/H and that this action induces a homomorphism $\phi : G \to S_n$ where $n = [G : H]$.

(c) Let $[G : H] = p$ be the smallest prime dividing $|G|$. Let $K = \ker(\phi)$ where ϕ is the above map. What can you say about $[G : K]$, the order of G/K?

(d) Use the definition of ϕ to prove that $K \leq H$.

(e) Observe that $[G : K] = [G : H][H : K]$. What does this tell you about $[H : K]$?

(f) Why can we conclude that H is normal?

3. Let G act on itself via conjugation. We call the orbit of g under this action the conjugacy class of g and denote it as $K(g) = K_G(g)$. Similarly, the stabilizer of g under this action is also known as the centralizer and denoted $C(g) = C_G(g) = \{h \in G \mid hg = gh\}$.

In 3 of Part I, we used 2d in order to show what is known as the Class Equation:

$$|G| = \sum |K(g)| = |Z(G)| + \sum_{K(g) \neq \{g\}} |K(g)|$$

(a) Let $N \subseteq G$. Observe that for each $g \in G$, either $K(g) \cap N = \emptyset$ or $K(g) \subseteq N$. Thus, N is a union of conjugacy classes.

(b) Confirm that $C(g)$ is in fact Stab_g and use 1c from Part I to show that the size of the conjugacy class of g is $[G : C(g)]$, the index of the centralizer of g in G. Use to restate the Class Equation.

(c) What is the class equation for the symmetric group S_n?

(d) What are the centralizers $C_{S_n}(\sigma)$ in S_n?

(e) Use $|C_{A_n}(\sigma)|$ to find the sizes of all the conjugacy classes in A_5.

(f) Use 3a and Lagrange’s Theorem to show that A_5 does not have a non-trivial normal subgroup.