Definition: We say a group G acts on a set X if for each $g \in G$ there is an associated operation $g \cdot \star : X \to X$ written as $g \cdot x$ sending x to $g \cdot x \in X$ and this operation obeys the following rules:

- $g \cdot (h \cdot x) = (gh) \cdot x$ for all $g, h \in G$ and $x \in X$;
- $e \cdot x = x$ for all $x \in X$ (where e is the identity element of G).

Such an operation is a group action of G on X.

1. Observe that the following are group actions:

 (a) S_n acting on $[n] = \{1, 2, \ldots, n\}$ as permutations.
 (b) D_n acting on the labelled corners of an n-gon (note, this is a sub-action of S_n).
 (c) G acting on X by $g \cdot x = x$ for all $g \in G$ and $x \in X$.

2. Come up with (non-trivial) group actions between the following groups and sets:

 (a) $G = \mathbb{Z}$ and $X = \mathbb{Z}$.
 (b) $G = \mathbb{Z}_2$ and $X = \mathbb{Z}$.

3. Prove that if G acts on X, there is an associated homomorphism $\phi : G \to S_X$, where S_X is the symmetric group on X ($S_X = \{\sigma : X \to X | \sigma \text{ is a bij.}\}$).

4. Show that G acts on itself in the following ways:

 (a) Show that left multiplication forms a group action of G on $X = G$. (i.e. $g \cdot x = gx$ where $g, x \in G$)
 (b) Show that conjugation forms a group action. (i.e. $g \cdot x = gxg^{-1}$ where $g, x \in G$)

5. Use 3 and 4a to prove Cayley’s theorem: Every group G is isomorphic to a subgroup of S_G.

6. Definition: Let x be an element of a set X acted on by a group G. We define the stabilizer of x as $\text{Stab}_x = \{g \in G | g \cdot x = x \} \subseteq G$. We further define the orbit of x as $\text{Orb}_x = \{g \cdot x | g \in G\}$.

 (a) Prove that Stab_x is a subgroup of G.
 (b) Prove that $g \cdot x = a \cdot x$ if and only if $g \in a \text{Stab}_x$ (the left coset of Stab_x containing a).
 (c) Prove that $|\text{Orb}_x| = [G : \text{Stab}_x]$.

7. More on orbits:

 (a) Show that if $y \in \text{Orb}_x$, then $\text{Orb}_x = \text{Orb}_y$.
 (b) Show that if $\text{Orb}_x \cap \text{Orb}_y \neq \emptyset$, then $\text{Orb}_x = \text{Orb}_y$ (i.e. orbits are either disjoint or equal).
 (c) The orbits of X are the distinct sets Orb_x which partition X. We define the orbits of X as $\mathcal{O}(X) = \{\text{Orb}_x | x \in X\}$ and observe that X is the disjoint union of the $O \in \mathcal{O}(X)$.

1
(d) Observe that $\sum_{O \in \mathcal{O}(X)} |O| = |X|$

8. We wish to show that if G is a group of order p^n where p is a prime and $n \geq 1$, then $Z(G)$ is a non-trivial subgroup (i.e. the center of G has order at least p). To do so, we once again consider G acting on $X = G$ by conjugation (i.e. $g \cdot x = gxg^{-1}$).

(a) What values can $|\text{Stab}_x|$ take?

(b) What values can $|\text{Orb}_x|$ take?

(c) For which x is $|\text{Orb}_x| = 1$?

(d) Use 7d to conclude that $|Z(G)| > 1$.

9. We wish to show that any group G of order p^2 where p is a prime must be abelian. We assume for the sake of contradiction we have a non-abelian group G of order p^2.

(a) Show that G has no element of order p^2.

(b) Show that $|Z(G)| = p$.

(c) Show that there is some subgroup $H = \langle g \rangle$ generated by $g \in G$ such that $Z(G)H = G$.

(d) Conclude that $xy = yx$ for all $x, y \in G$, a contradiction.