1. Let G be a group with $H \leq G$ and $N \trianglelefteq G$.
 (a) Show that $HN = \{hg \mid h \in H, g \in N\}$ is a subgroup of G.
 (b) Suppose K is also normal in G. Prove that $KN \leq G$.
 (c) Show that $K \cap N \leq G$.
 (d) Suppose that $KN = G$. Prove that $G/(K \cap N) \cong G/K \times G/N$.

2. **Definition:** We say that $N \leq G$ is **characteristic** in G if, for any automorphism ϕ of G, we have $\phi(N) = N$.
 (a) Prove that if N is characteristic in G then N is normal (i.e. show being characteristic is stronger than being normal).
 (b) Can you give an example of an $N \leq G$ which isn’t characteristic? (Hint: try looking at Q_8, the Quaternions)
 (c) Give an example of $H \trianglelefteq N \trianglelefteq G$ such that H is not normal in G (i.e. show that normality is not transitive).
 (d) Prove that if H is characteristic in N and $N \trianglelefteq G$, then $H \trianglelefteq G$.

3. Let N be a normal subgroup of G with order $|N| = n$ such that $(n, [G : N]) = 1$.
 (a) Show that if $g \in G$ has order $|g|$ which divides n, then $g \in N$.
 (b) Use this to prove that N is the unique subgroup of G of order n.

4. **Definition:** Let $g, h \in G$. We define the **commutator** of g and h as $[g, h] := ghg^{-1}h^{-1}$.
 (a) Show that g and h commute if and only if $[g, h] = e$.
 (b) The **commutator** subgroup of G is defined as $[G, G] := \langle \{ghg^{-1}h^{-1} \mid g, h \in G\} \rangle$.
 i.e. it is the subgroup generated by all commutators of elements of G ($[g, h]$ for $g, h \in G$).
 Prove that $[G, G] \leq G$.
 (c) It turns out, $K = [G, G]$ is the “smallest” normal subgroup of G such that G/K is abelian. Prove that G/N is abelian if and only if $[G, G] \leq N \leq G$.