Juan Pablo Mejía Ramos
Associate Professor
Rutgers University

Contact Details

Graduate School of Education:
10 Seminary Place
Room 234
New Brunswick, NJ 08901
Tel. +1-848-932-0806

Department of Mathematics:
Hill Center
110 Frelinghuysen Road
Room 518
Piscataway, NJ 08854
Tel. +1-732-445-2390 x.6034

WebLinks




Hello

I am an Associate Professor of Mathematics Education at Rutgers University, where I am jointly appointed in the Department of Learning and Teaching within the Graduate School of Education and the Department of Mathematics within the School of Arts and Sciences. In this page you find information about my education, teaching at Rutgers, and academic writing. Please contact me if you have any questions/comments or if you would like an electronic copy of one of the papers listed below.

Education

PhD (Mathematics Education), University of Warwick, 2008.
MS (Mathematics Education), University of Warwick, 2004.
BS (Mathematics), Universidad de Los Andes, 2003.

Research

I am mainly interested in mathematical argumentation and proof, particularly the ways in which university students and research-active mathematicians construct, read, and present arguments and proofs in mathematics. Some of my most recent research projects have focused on:

  • the reasoning styles of mathematics undergraduate students as they construct proofs,
  • the reading of published proofs by research-active mathematicians,
  • the assessment of proof comprehension at the university level, and
  • the different ways in which mathematicians present proofs in their advanced mathematics courses.
For more information on these and other projects, please visit the website of our research group: Proof Comprehension Research Group.

Grants

National Science Foundation

  • K. Weber (PI), N. Wasserman, J.P. Mejía-Ramos, T. Fukawa-Connelly, & A. Cohen. 2015-2018. ULTRA: Upgrading Learning for Teachers in Real Analysis. DUE-1524681. Award, $519,900.

  • J.P. Mejía-Ramos (PI), K. Weber, & J. de la Torre. 2013-2015. Validating proof comprehension tests in mathematics. DUE-1245625. Award: $200,000.

  • J.P. Mejía-Ramos (PI), K. Weber, E. Fuller, & J. de la Torre. 2010-2013. Proving styles in university mathematics. DRL-1008641. Award: $441,900.

British Academy/Leverhulme

  • L. Alcock (PI), M. Inglis, & J. P. Mejía-Ramos. 2014-2017. Understanding Mathematical Language: Construction and Analysis of Expert and Learner Corpora. SG141241. Award: £3,733.

Teaching

Education Mathematics
  • 05:300:342
    Supervised Undergraduate Tutoring in Mathematics

  • 15:254:550
    Problem Solving Processes in Mathematics

  • 15:254:649
    Seminar in Mathematical Ideas

  • 15:255:536
    Teaching Internship Seminar

  • 01:640:300
    Introduction to Mathematical Reasoning

  • 01:640:311
    Introduction to Real Analysis

  • 01:640:350
    Linear Algebra

  • 01:640:351
    Introduction to Abstract Algebra I

Writing

Book Chapters

  • Mejía-Ramos, J. P., Alcock, L., Lew, K., Rago, P., Sangwin, C., & Inglis, M. (accepted). Using corpus linguistics to investigate mathematical explanation. To appear in F. Eugen & C. Mark (Eds.) Methodological Advances in Experimental Philosophy. London: Bloomsbury.

  • Weber, K., & Mejía-Ramos, J. P. (accepted). An empirical study on the admissibility of graphical inferences in mathematical proofs. To appear in A. Aberdein & M. Inglis (Eds.) Advances in Experimental Philosophy of Logic and Mathematics. London: Bloomsbury.

  • Inglis, M., & Mejía-Ramos, J. P. (2013). How persuaded are you? A typology of responses. In A. Aberdein & I. Dove (Eds.) The Argument of Mathematics (pp. 101-118). Springer: Dordrecht. This chapter is a reprint of the journal article published in Research in Mathematics Education 10(2), 119-133.

  • Tall, D. O., & Mejía-Ramos, J. P. (2010). The long-term cognitive development of reasoning and proof. In G. Hanna, H.N. Jahnke, and H. Pulte (Eds.), Explanation and Proof in Mathematics: Philosophical and Educational Perspectives (pp. 137-149). New York: Springer.

  • Mejía-Ramos, J. P. (2006). An analysis of three modes of proof. In A. Simpson (Ed.), Retirement as Process and Concept: A Festschrift for Eddie Gray and David Tall, Prague, Czec Republic, 15-16 July 2006 (pp. 173-180). Prague: Karlova Univerzita v Praze, Pedagogick Fakulta.

Refereed Journal Papers

  • Mejía-Ramos, J. P., & Weber, K. (accepted). Mathematics majors' diagram usage when writing proofs in calculus. Accepted for publication in Journal for Research in Mathematics Education.

  • Lew, K., & Mejía-Ramos, J.P. (accepted). Linguistic conventions of mathematical proof writing at the undergraduate level: Mathematicians' and students' perspectives. Accepted for publication in Journal for Research in Mathematics Education.

  • Weber, K., Lew, K., & Mejía-Ramos, J.P. (accepted). Using expectancy value theory to account for students' mathematical justifications. Accepted for publication in Cognition and Instruction.

  • Fukawa-Connelly, T., Weber, K., & Mejía-Ramos, J. P. (2017). Informal content and student note-taking in advanced mathematics classes. Journal for Research in Mathematics Education, 48(5), 567-579. [journal]

  • Wasserman, N., Fukawa-Connelly, T., Villanueva, M., Mejía-Ramos, J.P., & Weber, K. (2017). Making real analysis relevant to secondary teachers: Building up from and stepping down to practice. PRIMUS, 27(6), 559-578. [journal]

  • Mejía-Ramos, J. P., Lew, K., de la Torre, J., & Weber, K. (2017). Developing and validating proof comprehension tests in undergraduate mathematics. Research in Mathematics Education, 19(2), 130-146. [journal]

  • Weber, K., Fukawa-Connelly, T., Mejía-Ramos, J. P., & Lew, K. (2016). How to help students understand lectures in advanced mathematics. Notices of the American Mathematical Society, 63(10), 1190-1193. [journal]

  • Lew, K., Fukawa-Connelly, T., Mejía-Ramos, J.P., & Weber, K. (2016). Lectures in advanced mathematics: Why students might not understand what the professor is trying to convey. Journal for Research in Mathematics Education 47(2), 162-198. [preprint][journal]

  • Zazkis, D., Weber, K., & Mejía-Ramos, J.P. (2016). Bridging the gap between informal argument and mathematical proof. Educational Studies in Mathematics 93(2), 155-173. [journal]

  • Zhen, B. Mejía-Ramos, J.P. & Weber, K. (2016). Mathematics majors’ perceptions on the permissibility of graphs in proofs. International Journal for Research in Undergraduate Mathematics Education 2(1), 1-29. [preprint][journal]

  • Mejía-Ramos, J. P., Weber, K., & Fuller, E. (2015). Factors influencing students' propensity for semantic and syntactic reasoning in proof writing: A single-case study. International Journal of Research in Undergraduate Mathematics Education 1(2), 187-208. [journal]

  • Weber, K. & Mejía-Ramos, J. P. (2015). The contextual nature of conviction in mathematics. For the Learning of Mathematics, 35(2), 9-14. [journal]

  • Zazkis, D., Weber, K., & Mejía-Ramos, J. P. (2015). Two proving strategies of highly successful mathematics majors. Journal of Mathematical Behavior, 39, 11-27.

  • Fuller, E., Weber, K., Mejía-Ramos, J. P., Samkoff, A., & Rhoads, K. (2014). Comprehending structured proofs. International Journal for Studies in Mathematics Education 7(1), 1-32.[journal]

  • Weber, K., Inglis, M., & Mejía-Ramos, J. P. (2014). How mathematicians obtain conviction: Implications for mathematics instruction and research on epistemic cognition. Educational Psychologist, 49(1), 36-58. [preprint] [journal]

  • Mejía-Ramos, J. P., & Weber, K. (2014). Why and how mathematicians read proofs: further evidence from a survey study. Educational Studies in Mathematics, 85(2), 161-173. [preprint] [journal]

  • Weber, K., & Mejía-Ramos, J. P. (2014). Mathematics majors' beliefs about proof reading. International Journal of Mathematical Education in Science and Technology, 45(1), 89-103.[preprint] [journal]

  • Weber, K., & Mejía-Ramos, J. P. (2013). The influence of sources in the reading of mathematical text: A reply to Shanahan, Shanahan, and Misischia. Journal of Literacy Research, 45, 87-96.

  • Weber, K., & Mejía-Ramos, J. P. (2013). On mathematicians' proof skimming: A reply to Inglis and Alcock. Journal for Research in Mathematics Education, 44(2), 464-471.

  • Inglis, M., Mejía-Ramos, J. P., Weber, K., & Alcock, L. (2013). On mathematicians’ different standards when evaluating elementary proofs. Topics in Cognitive Science, 5(2), 270-282. [preprint]

  • Lai, Y., Weber, K., & Mejía-Ramos, J. P. (2012). Mathematicians' perspectives on features of a good pedagogical proof. Cognition and Instruction, 30(2), 146-169. [preprint] [journal]

  • Mejía-Ramos, J. P., Fuller, E., Weber, K., Rhoads, K., & Samkoff, A. (2012). An assessment model for proof comprehension in undergraduate mathematics. Educational Studies in Mathematics, 79(1), 3-18. [preprint] [journal]

  • Iannone, P., Inglis, M., Mejía-Ramos, J. P., Simpson, A. & Weber, K. (2011). Does generating examples aid proof production? Educational Studies in Mathematics, 77, 1-14.

  • Mejía-Ramos, J. P. & Inglis, M. (2011). Semantic contamination and mathematical proof: Can a non-proof prove? Journal of Mathematical Behavior, 30, 19-29. [preprint] [journal]

  • Weber, K. & Mejía-Ramos, J. P. (2011). Why and how mathematicians read proofs: An exploratory study. Educational Studies in Mathematics, 76, 329-344. [preprint] [journal]

  • Weber, K. & Mejía-Ramos, J. P. (2009). An alternative framework to evaluate proof productions. Journal of Mathematical Behavior, 28, 212-216.

  • Inglis, M., & Mejía-Ramos, J. P. (2009). The effect of authority on the persuasiveness of mathematical arguments. Cognition and Instruction, 27, 25-50. [preprint] [journal]

  • Inglis, M., & Mejía-Ramos, J. P. (2009). On the persuasiveness of visual arguments in mathematics. Foundations of Science, 14, 97-110. [preprint] [journal]

  • Mejía-Ramos, J. P., & Inglis, M. (2009). What are the argumentative activities associated with proof? Research in Mathematics Education, 11, 77-78.

  • Inglis, M., & Mejía-Ramos, J. P. (2008). How persuaded are you? A typology of responses. Research in Mathematics Education, 10(2), 119-133. [preprint] [journal]

  • Inglis, M., & Mejía-Ramos, J. P. (2008). Theoretical and methodological implications of a broader perspective on mathematical argumentation. Mediterranean Journal for Research in Mathematics Education, 7(2), 107-119.

  • Inglis, M., Mejía-Ramos, J. P., & Simpson, A. (2007). Modelling mathematical argumentation: The importance of qualification. Educational Studies in Mathematics, 66, 3-21. [preprint] [journal]

  • Inglis, M., & Mejía-Ramos, J. P. (2005). La fuerza de la aserción y el poder persuasivo en la argumentación en matemáticas. Revista EMA: Investigación e Innovación en Educación Matemática, 10, 327-352. [preprint]