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0. overview

My primary research interest is metric Riemannian geometry, in particular the relation between

curvature and topology. My research work so far has focused on how Ricci curvature determines the

fundamental group of the underlying manifold, via the method of Gromov-Hausdorff convergence.

The interplay between curvature and topology is always a core issue in Riemannian geometry.

For example, a longstanding open problem is the Milnor conjecture [17], which was proposed in

1968.

Milnor Conjecture. Let M be an open n-manifold of Ric ≥ 0, then π1(M) is finitely generated.

The Milnor conjecture remains open. It is natural to ask: on what additional conditions does

the Milnor conjecture hold? I focused my graduate work on this question.

Before stating my results, we first introduce some background information on this conjecture.

For open manifolds with non-negative sectional curvature, Toponogov’s triangle comparison

controls the small-scale geometry from the large one. This bounds the number of Gromov’s short

generators [12], and finite generation follows. Actually any open manifold with non-negative secti-

onal curvature has finite topology [6]. However, for non-negative Ricci curvature, the manifold

may have infinite topology [21]. Unlike sectional curvature, Ricci curvature lacks a strong rela-

tion between the large-scale geometry and the small-scale one, which is the main difficulty when

studying Ricci curvature.

The Milnor conjecture has been proven under various additional assumptions in the past decades.

For instance, for a manifold with Euclidean volume growth, Anderson and Li have independently

proven that the fundamental group is finite [1, 15]. Sormani has discovered geometric properties

for the shortest geodesic loop that represents the short generator [22]. With this, she has shown

that the Milnor conjecture holds if the manifold has small linear diameter growth, or linear volume

growth. Liu has classified open 3-manifolds of nonnegative Ricci curvature using minimal surface

theory and Perelman’s work on the Poincaré conjecture [16]. In particular, his result confirms the

Milnor conjecture in dimension 3.

One of the results I present is a new proof of the Milnor conjecture in dimension 3 using the

structure of Ricci limit spaces [18]. This paper has been accepted for publication in Journal für

die reine und angewandte Mathematik.

Theorem A. The Milnor conjecture is true in dimension 3.

In [19], I prove a new result on the Milnor conjecture with condition on the universal cover.

Theorem B. Let M be an open n-manifold of Ric ≥ 0. If the Riemannian universal cover of

M has Euclidean volume growth and the unique tangent cone at infinity, then π1(M) is finitely

generated.
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This paper is available on arXiv. For a more general result, see Section 2.

The key idea in proving these two theorems is that, when the fundamental group is not finitely

generated, we can see its consequence from π1(M,x)-action on M̃ at infinity, where M̃ is the

Riemannian universal cover of M . Under additional assumptions, if one can rule out the possibility

of such an impact by analyzing the geometry of M at infinity and π1(M,x)-action at infinity, then

the finite generation would follow. More explanations are included in Section 1 and 2 respectively.

In a joint work with my thesis advisor Xiaochun Rong [20], we have another result on the finite

generation of fundamental groups with assumptions on π1(M,x)-action on M̃ .

Theorem C. Let (M,x) be an open n-manifold with RicM ≥ 0. If there are ε, η > 0 such that

π1(M,x)-action has no ε-small η-subgroup on M̃ with all scales r > 0, then π1(M,x) is finitely

generated.

The no ε-small η-subgroup condition in Theorem C is closely related to volume and the relation

among isometries on different scales. More explanations are included in Section 3.

All these proofs rely on the structure of Ricci limit spaces and equivariant Gromov-Hausdorff

convergence.

Gromov-Hausdorff convergence provides a platform to study the set of all manifolds with cur-

vature bounds as a whole instead of individual ones. For a Gromov-Hausdorff convergent sequence

Mi
GH→ X, understanding the structure of limit space X, and the relations between X and Mi are

crucial. Around 2000, Cheeger and Colding developed a rich theory on the limit spaces coming

from manifolds with lower Ricci curvature bounds [2, 3, 4, 5]. In recent years, Cheeger, Colding,

and Naber further deepened the theory of Ricci limit spaces [7, 8, 9]. These results offer powerful

tools in the absence a strong relation between the large-scale geometry and the small-scale one.

To study fundamental group, it is natural to consider its action on the universal cover M̃ . Com-

bined with Gromov-Hausdorff convergence, Fukaya-Yamaguchi introduced equivariant Gromov-

Hausdorff convergence [11]: for a convergent sequence Xi
GH→ X, if Xi carries isometric Gi-actions,

then these symmetries pass to certain limit isometric G-action on the limit space X. Together with

the structure of Ricci limit spaces mentioned above, these are the main tools to prove Theorems

A, B, and C.

1. 3-manifolds

For 3-manifolds, Schoen and Yau have developed minimal surface theory, and have shown that

any 3-manifold of positive Ricci curvature is diffeomorphic to the Euclidean space R3 [23]. Based

on their minimal surface theory and Perelman’s work on 3-manifolds, Liu has proven that for a

3-manifold with non-negative Ricci curvature, either it is diffeomorphic to R3, or its universal cover

splits off a line [16]. A direct consequence is the Milnor conjecture in dimension 3.

My proof in [18] is completely different and more self-contained as Riemannian geometry. As

indicated above, the key is investigating the tangent cones of M and (M̃, π1(M,x)) at infinity via

equivariant Gromov-Hausdorff convergence (ri →∞):

(r−1i M̃, x̃, π1(M,x))
GH−−−−→ (Ỹ , ỹ, G)yπ yπ

(r−1i M,x)
GH−−−−→ (Y = Ỹ /G, y).

(1)
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One observation I note is that, if π1(M) is not finitely generated, then using the lengths of

Gromov’s short generators ri → ∞, we can obtain a tangent cone of (M̃, π1(M,x)) at infinity

(Ỹ , ỹ, G), such that the orbit G · ỹ is not connected [18]. In this way, we can see the consequence

of non-finite generation from π1(M,x)-action at infinity. One may compare this phenomenon with

a result by Sormani [22]. She has shown that if π1(M) is not finitely generated, then with the

same ri → ∞, the lengths of short generators, the corresponding tangent cone of M at infinity

(Y, y) satisfies that y is not a pole of Y . Both results see the consequences of non-finite generation,

through the geometry of M at infinity, or through π1(M,x)-action at infinity. They are crucial in

my proof of Theorem A.

In dimension 3, in terms of the dimension in the Colding-Naber sense [9] of Y and Ỹ in (1), the

possibilities are very limited:

Case 1. dim Ỹ = 3 (with dimY = 1, 2 or 3);

Case 2. dimY = dim Ỹ = 2;

Case 3. dimY = 1 (with dim Ỹ = 1, 2 or 3).

Moreover, we can further assume that π1(M) is abelian and torsion free due to the reductions by

Wilking and Evans-Moser [24, 10]. Using the structure of Ricci limit spaces, I carefully rule out

these possibilities when π1(M) is not finitely generated. This leads to Theorem A.

2. Equivariant stability at infinity

My proof of Theorem A convinces me that more partial results on the Milnor conjecture are

within reach by investigating the tangent cones of (M̃, π1(M,x)) at infinity (1). In [19] I consider

the case that the maximal Euclidean factor of M̃ at infinity is stable. More precisely, for an open

n-manifold of Ric ≥ 0 and an integer k, we say that M is k-Euclidean at infinity, if any tangent

cone of M at infinity is a metric cone, whose maximal Euclidean factor has dimension k. For

example, if M has Euclidean volume growth and the unique tangent cone at infinity, then it is

k-Euclidean at infinity for some k. In general, being k-Euclidean at infinity allows M to have

different tangent cones at infinity, even with different dimensions.

For a tangent cone of M̃ at infinity as a metric cone (Ỹ , ỹ) = (Rk × C(Z), (0, z)), where C(Z)

has diam(Z) < π and vertex z, due to Cheeger-Colding’s splitting theorem [2], the isometry group

Isom(Ỹ ) splits as Isom(Rk)× Isom(Z). Hence for a limit G-action on such a space (Ỹ , ỹ), we can

consider the projected G-action on Rk-factor, that is, (Rk, 0, p(G)), where p : Isom(Ỹ )→ Isom(Rk)

is the projection. As the main technical result in [19], I prove that if the universal cover M̃ is

k-Euclidean at infinity, then π1(M)-action on M̃ has equivariant stability at infinity, in terms of

the projected action on Rk-factor.

Theorem 2.1. Let M be an open n-manifold with abelian fundamental group and Ric ≥ 0, whose

universal cover M̃ is k-Euclidean at infinity. Then there exist a closed abelian subgroup K of O(k)

and some integer l ∈ [0, k] such that for any tangent cone of (M̃, π1(M,x)) at infinity (Ỹ , ỹ, G) =

(Rk × C(Z), (0, z), G), its projected G-action on Rk-factor (Rk, 0, p(G)) satisfies p(G) = K × Rl,
where K-action fixes 0 and the subgroup {e} × Rl acts as translations in Rk.

Theorem 2.1 says that stability of Euclidean factors at infinity implies stability of projected

π1(M,x)-action on these Euclidean factors at infinity. A direct consequence of Theorem 2.1 is that

the orbit G · ỹ is always connected. Thus Theorem 2.1 confirms that the Milnor conjecture is true

for manifolds whose universal covers are k-Euclidean at infinity. This also implies Theorem B.
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Theorem 2.2. Let M be an open n-manifold of Ric ≥ 0. If the Riemannian universal cover of

M is k-Euclidean at infinity, then π1(M) is finitely generated.

To prove Theorem 2.1, I develop a critical rescaling argument to understand the equivariant

stability at infinity. I believe that this method has further applications on other conditions (see

Section 4).

3. Actions with no small almost subgroups

Cheeger and Colding have shown that, the isometry group of any non-collapsing Ricci limit

space, (X, p) ∈ M(n,−1, v), is a Lie group [4]. More precisely, they have shown that there are

no arbitrarily small subgroups of Isom(X) in terms of their displacements. In a joint work with

Xiaochun Rong [20], we prove a quantitative version of this result: there is a uniform lower bound

δ(n, v) on the displacement of any non-trivial subgroup on the unit metric ball.

Theorem 3.1. Given n, v > 0, there exists a positive constant δ(n, v) such that for any Ricci limit

space (X,x) ∈M(n,−1, v) and any nontrivial subgroup H in Isom(X), we have Dr,x(H) ≥ rδ for

all r ∈ (0, 1], where Dr,x(H) = supq∈Br(x),h∈H d(hq, q).

For an equivariant convergent sequence and a subgroup in the limit group G, we may not find a

sequence of subgroups converging to this subgroup. Hence it is necessary to consider subsets that

are very close to subgroups. The concept of almost groups describes how a subset of G is close

to being a subgroup, in terms of G-action. Note that for a subset A of G with A−1 = A, it is a

subgroup if and only if A2 = A, where A−1 = {a−1|a ∈ A} and A2 = {aa′|a, a′ ∈ A}. This inspires

us to define a subset A with A−1 = A as an η-subgroup at q, if the scaling invariant

dH(Aq,A2q)

diam(Aq)
≤ η,

where dH is the Hausdorff distance.

Definition 3.2. Let ε, η, r > 0 and (M,x) be a complete n-manifold. For a subgroup G of Isom(M)

acting freely and isometrically on M , we say that G-action has no ε-small η-subgroup at q ∈ M
with scale r, if for any nontrivial η-subgroup A at q, Dr,q(A) ≥ rε holds.

Comparing Definition 3.2 with Theorem 3.1, one may expect that π1(M)-action has no ε-small

η-subgroup with scale r ∈ (0, 1] if vol(B1(x̃)) ≥ v > 0. However, this is much harder. It turns out

that this is closely related to isometries on different scales.

Question 3.3. Let (Mi, pi) be a sequence of complete n-manifolds with RicMi ≥ −(n − 1) and

vol(B1(pi)) ≥ v > 0. Let fi be a sequence of isometries on Mi. Suppose that the following sequences

converge (ri →∞):

(Mi, xi, fi)
GH−→ (X,x, f∞), (riMi, xi, fi)

GH−→ (X ′, x′, id),

where id means the identity map. Is it true that f∞ = id always holds?

Question 3.3 asks whether there is a control between the large-scale geometry and the small

one, in terms of isometries that are very close to the identity map. There are counter-examples if

the volume lower bound is dropped. Also, it can be shown that when the sectional curvature has

a lower bound (with no restrictions on volume), the answer is yes [20].
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If Question 3.3 has an affirmative answer, then we show that there are positive constants ε(n, v)

and η(n, v) such that π1(M,x)-action has no ε-small η-subgroups at x̃ with scale r ∈ (0, 1], given

that vol(B1(x̃)) ≥ v > 0 [20]. Together with Theorem C, this would imply that the Milnor

conjecture holds for manifolds whose universal covers have Euclidean volume growth.

The technical part in proving Theorem C is studying the relation between an equivariant con-

vergent sequence and its rescaling sequence:

(M̃i, x̃i,Γi)
GH−−−−→ (X̃, x̃, G)yπi

yπ
(Mi, xi)

GH−−−−→ (X = X̃/G, x),

(riM̃i, x̃i,Γi)
GH−−−−→ (X̃ ′, x̃′, G′)yπi

yπ′

(riMi, xi)
GH−−−−→ (X ′ = X̃ ′/G′, x′),

(2)

where Γi = π1(Mi, xi). When Mi has uniform lower sectional curvature bound, it is known that

X and X ′ satisfies dim(X ′) ≥ dim(X). If dim(X̃ ′) = dim(X̃) = n, then it is equivalent to study

the dimension of limit symmetries: dim(G) and dim(G′). For Ricci curvature, there is no such

dimension monotonicity in general. We prove that if Γi-action has no small almost subgroups,

then dimension monotonicity on symmetries holds:

Theorem 3.4. Let (Mi, xi) be a sequence of complete n-manifolds with abelian fundamental groups

Γi and RicMi ≥ −(n − 1). Consider the convergent sequence and its rescaling as in (2). If there

are ε, η > 0 such that for each i, Γi-action has no ε-small η-subgroups on B1(x̃i) ⊆ M̃ with all

scales r ∈ (0, 1], then dim(G′) ≤ dim(G).

With Theorem 3.4, we bound the number of short generators at x by an induction argument

on dim(G), which implies Theorem C.

Theorem 3.5. Given n,R, ε, η > 0, there exists a constant C(n,R, ε, η) such that for any complete

n-manifold M with RicM ≥ −(n − 1), if π1(M,x) is abelian and π1(M,x)-action has no ε-small

η-subgroup on B1(x̃) with all scales r ∈ (0, 1], then the number of short generators at x is bounded

by C(n,R, ε, η).

Kapovitch-Wilking proved that with the Ricci curvature condition alone, there is q ∈ B1(x)

such that the number of short generators at q is bounded by a constant C(n,R) [14]. To prove the

Milnor conjecture by bounding number of short generators, it is essential to bound exactly at x.

4. Research Agenda

In the future, I intend to continue my work on the interplay between curvature and fundamental

groups. I would also like to extend my research to related areas.

Regarding the Milnor conjecture, as is seen in my work [18, 19], the investigation of tangent

cones of (M̃, π1(M,x)) at infinity brings new insights into the Milnor conjecture, and I believe that

the critical rescaling argument in [19] has more applications on other conditions. The equivariant

stability at infinity I discovered not only is closely related to the Milnor conjecture, but also

addresses this question: does stability of the space at infinity implies stability of its symmetries at

infinity?. In [19], I consider the case that the maximal Euclidean factor of tangent cones of M̃

at infinity is stable. It would be interesting to consider other conditions and answer the above

question. From this perspective, [19] is a starting point in understanding equivariant stability at

infinity. I would expect certain equivariant stability holds with the following assumptions:

• Any tangent cone of M̃ at infinity is a metric cone that is sufficiently close to some fixed metric
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cone C(Z). A special case is when M̃ has almost maximal volume growth so that any tangent

cone of M̃ at infinity is very close to the Euclidean space Rn = C(Sn−1). In general, this condition

allows M̃ to have tangent cones with different dimensions or different Euclidean factors.

• M̃ has Euclidean volume growth. With this assumption, any tangent cone of M̃ at infinity is a

metric cone of Hausdorff dimension n [2]. Moreover, the volume is stable at infinity, in the sense

that, for any tangent cone of M̃ at infinity (Ỹ , ỹ), the volume of B1(ỹ) is invariant.
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