Sample solutions

[Meant to illustrate appropriate level of detail.]

Problem. A multigraph $G = (V, E)$ is *bipartite* if there’s a partition $V = X \cup Y$ so that every edge has one end in each of X, Y (i.e. $\nabla(X, Y) = E$).

(a) Show that any bipartite multigraph with maximum degree at most d is contained in a d-regular bipartite multigraph (possibly with additional vertices).

(b) Same for bipartite *graphs* (i.e. *simple* graphs).

Solutions. (Assume $G = (X \cup Y, E)$ as above.)

In either case WMA G is *balanced*, i.e. $|X| = |Y|$: if it isn’t, first extend it to a balanced (bipartite) G' by adding isolated vertices (vertices not contained in any edges).

(a) Let $d_G(v) = d(v)$. We proceed by induction on

$$N := \sum_{x \in X} (d - d(x)) = |X|d - |E(G)| = |Y|d - |E(G)| = \sum_{y \in Y} (d - d(y)) \quad (1)$$

(the number of “missing” edges). If $N = 0$, G is already d-regular. If it’s not, then there are $x \in X$ and $y \in Y$ of degree less than d and we can add an edge joining x and y, decreasing N. (So “multi” makes this very easy.)

[Note for example: (a) this partly omitted justification for “WMA,” namely, skipped commenting on the trivial points (i) you can get to balance by adding isolates and (ii) proving the thing for G' also proves it for G; (b) I regard (1) as not needing justification; (c) I consider the last couple lines sufficient (experience suggests some of you would feel you should say more).]

(b) If necessary add isolated vertices (the same number to each of X, Y) so that N (as above) is at least $d - 1$. Now let $X = \{x_1, \ldots, x_n\}$ and $Y = \{y_1, \ldots, y_n\}$, and add:

- isolated vertices u_1, \ldots, u_N to X and v_1, \ldots, v_N to Y;
- edges joining each x_i to $d - d(x_i)$ of the v_j’s, with each v_j used exactly once, and similarly for edges between the y_i’s and u_j’s;
- for each $j \in [N]$, edges joining u_i to v_i, \ldots, v_{i+d-2} (with subscripts interpreted mod N).
(And this does it.)

[So I’d accept (or prefer) that last assertion without the routine (but perhaps painful) justification: it’s clear the construction does what it’s supposed to, and I’m willing to believe you understand this if you’ve come up with it.]