1. Prove Farkas’ Lemma (if you haven’t seen it), e.g. in the form:
if \(f : \mathbb{N} \rightarrow \mathbb{R} \) is superadditive (i.e. \(f(a + b) \geq f(a) + f(b) \)), then \(\lim n^{-1} f(n) \) exists (it may be infinite) and is at least \(m^{-1} f(m) \) for every \(m \).

2. As in class, let \(f(k) = f_3(k) \) be the maximum size of a \(k \)-uniform \(F \) with no sunflower, here meaning of size 3, and let \(g(k) \) be the maximum size of such an \(F \) that is also intersecting (i.e. \(A \cap B \neq \emptyset \forall A, B \in F \)).
 (a) Show that \(f(kl) \geq f(k)g(l)^k \).
 (b) Conclude that for \(k \) a power of 3, \(f(k) \geq 2g(k) \geq 2 \cdot 10^{(k-1)/2} \).
 [Hint: Start with a 3-uniform, 10-edge hypergraph gotten by identifying antipodal points of an icosahedron.]

3*. Prove the Erdős-Szemerédi Conjecture for (any) \(r \geq 4 \).

4. Prove Ellenberg-Gijswijt: \(g(n) < (2.75 \cdots)^n \) (or just \(g(n) < (3 - \varepsilon)^n \)).

5. Give an elementary (non-linear algebraic) proof of the C-D Theorem.
 [Minor suggestion: use induction on \(|B| \) (say).]

6. Prove the lemma from class that underlies the “Nullstellensatz”:
 If \(S_1, \ldots, S_n \subseteq \mathbb{F} \) (a field) and \(f \in \mathbb{F} \) vanishes on \(\prod S_i \) and is “reduced” (i.e. \(\deg_S(f) < s_i := |S_i| \forall i \)), then \(f \equiv 0 \) (coefficientwise).

7. Prove the Alon-Nathanson-Ruzsa result stated in class:
 For \(p \) prime and \(A, B \) nonempty subsets of \(\mathbb{Z}_p \) with \(a = |A| \neq |B| = b, \)
 \[|A \oplus B| \geq \min\{p, a + b - 2\} \]
 (where \(A \oplus B = \{\alpha + \beta : \alpha \in A, \beta \in B, \alpha \neq \beta\} \)).

8*. For any \(k \) and \(n \), the “Davenport constant” of \(\mathbb{Z}_k^n \) is \(m := n(k - 1) + 1 \); that is, for any \(a^1, \ldots, a^m \in \mathbb{Z}_k^n \) there is some \(\emptyset \neq I \subseteq [m] \) with \(\sum_{i \in I} a^i = 0 \).

9. Show that one can’t cover \(\{0, 1\}^n \setminus \{0\} \) (\(\subseteq \mathbb{R}^n \)) by fewer than \(n \) affine hyperplanes not containing \(0 \).
An affine hyperplane is \(\{ x \in \mathbb{R}^n : a \cdot x = b \} \) for some \(a \neq 0 \in \mathbb{R}^n \) and \(b \in \mathbb{R} \). Of course this fails to contain 0 iff \(b \neq 0 \). You should check that \(n \) is best possible, and see what happens if we allow the hyperplanes to contain 0.

10. Prove that (as stated in class) the graph on \(\{ k \text{-trees of } (V_r) \} \) (with \(T \sim T' \) iff \(T \cap T' \) is a \((k-1) \)-tree) is connected.