1. (a) A function \(f : 2^V \to \mathbb{R} \) is submodular if
\[
f(X \cap Y) + f(X \cup Y) \leq f(X) + f(Y) \quad \forall X, Y \subseteq V.
\]
Show that for any graph \(G \) on \(V \), \(f(X) = |\nabla_G(X)| \) is submodular.

[In case we haven’t said: \(2^X := \{ \text{subsets of } X \} \).]

(b) If \(G \) is minimally \(k \)-edge connected (i.e. \(\lambda(G) \geq k \) but \(\lambda(G - e) < k \) for every edge \(e \)), then \(\delta_G = k \) (where \(\delta \) is minimum degree).

2. Let \(x, y \) be vertices of \(G = (V, E) \) with \(d(x, y) = d \), and suppose that for any \(F \subseteq E \) of size at most \(k - 1 \), \(d_{G-F}(x, y) \) is still \(d \). Then \(G \) contains \(k \) edge-disjoint \(\{x, y\}\)-paths of length \(d \).

3. Let \(G = (V, E) \) be \(k \)-connected, \(k \geq 2 \), and \(X = \{x_1, \ldots, x_k\} \subseteq V \). Show there is a cycle of \(G \) whose vertex set contains \(X \).

4. A digraph \((V, A) \) is strongly connected (SC) if it contains a (directed) \((s, t)\)-path for all \(s, t \in V \). Show that any multigraph \(G \) with \(\lambda(G) \geq 2 \) has a strongly connected orientation.

5. For \(n \geq 2 \), if \(G \not\sim K_n \) then \(\chi(G) \leq 2^{n-2} \).

6. If \(\chi(G) = k \), what’s the least size of a collection of \(r \)-colorable graphs whose union is \(G \)?

[Recall \(r \)-colorable means \(\chi \leq r \). It may help to start with \(r = 2 \).]

7. Improve the bound in Problem 5 when \(n = 4 \): if \(G \not\sim K_4 \) then \(\chi(G) \leq 3 \).

8. Any digraph \(D = (V, A) \) with no (directed) odd cycle has a kernel.

[Suggestion: first do it when \(D \) is strongly connected.]