Representations of Finite Groups: The Basics

September 9, 2020

Representations of Finite Groups: The Basics

September 9, 2020 1 / 33

Table of Contents

What are Representations?

- 2 Classification?
- 3 Irreducible Representations
- Which representations are irreducible?
- 5 Characters
- 6 Subgroups

3

SQ (~

< ロ > < 同 > < 三 > < 三 >

Changing X → 🕔

and \mathbf{N} v.s. / C g: V-)V Vt>g.v linear

VS_

Anoth

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ● ●

Another View

V v.S. K group hom (V, f) is arep of G.

September 9, 2020 5 / 33

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Examples

- Permutation Representation GC X set V w/ basss. Zex 1 xeX Carx g. Cx = $\leq q_{x} e_{x},$ Mx E C
- R RG. • Regular Representation (<(" (5 X= (S left wolt busis Ely 1 geg! Si a eg , *Q*g €Ĵ

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

3

 $\mathcal{A} \mathcal{A} \mathcal{A}$

The Regular Representation is Special

requiar V v.B on which Gaots linearly. algebra structure on V. also have $\left(\sum_{q}a_{q}e_{g}\right)\left(\sum_{g}b_{g}e_{g}\right)=\sum_{k=g}\left(\sum_{hk=g}a_{k}\right)e_{g}$ CG, CEGJ group-algebra. ZGropJGJ Simodule of CEGJJ. Over C. $\mathcal{O} \mathcal{Q} \mathcal{O}$

Even More Examples (better ones)

 $G = J_2$ () Trivial rep. $U=\mathbb{C}$, $g:G \to GL(u)$ $g \mapsto CFJ$ (2) Alternating rep, U'=C, $f: G \longrightarrow GL(U)$ $g \longmapsto [Sgn(g)].$ (1), (123) (12) Ernot trivual.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

S_3 Examples Continued...

 $S_{z} \quad (\forall \chi = \{1, 2, 3\})$ (3) Permutation rep. basis { e, lz, lz, lz) $W = \mathbb{C}^3$ p: G -> GL (W) g(e,) = Egin $q \cdot (Z_1, Z_2, Z_3) = (Z_{\tilde{g}'(1)}, Z_{g'(2)}, Z_{\tilde{g}'(3)}).$

3

 $\mathcal{A} \mathcal{A} \mathcal{A}$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Table of Contents

1 What are Representations?

2 Classification?

- 3 Irreducible Representations
- 4 Which representations are irreducible?
- 5 Characters

< ロ > < 同 > < 三 > < 三 >

3

SQ (~

Motivating Problem

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のへで

Still Some Redundancy

Consider our previous example, the trivial representation of S_3 :

$$G = S_{3}, \quad U = \mathbb{C}, \quad \rho: G \to GL(U) \text{ where } \rho(g) = [1].$$

$$V_{l} = \mathbb{C}^{2} \quad \text{and} \quad f: G \to GL(V_{l})$$

$$g \mapsto \begin{bmatrix} 1 & 0 \\ 0 & l \end{bmatrix}$$

$$V_{1} = U \oplus U.$$

$$V_{2} = \mathbb{C}^{2} \quad \text{and} \quad f: G \to G(V_{2})$$

$$g \mapsto \begin{bmatrix} 1 & 0 \\ 0 & \text{Sgn}(g) \end{bmatrix}$$

September 9, 2020 12 / 33

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ● ●

Table of Contents

- 1 What are Representations?
- 2 Classification?
- 3 Irreducible Representations
 - 4 Which representations are irreducible?
- 5 Characters
- 6 Subgroups

< ロ > < 同 > < 三 > < 三 >

3

SQ (~

Definitions

Vrep of 6. - subrep WCV () Subspice (2) Invariant under action of G. gW CW irred. if V+B and has no sub rep besides o and V, Ví is 11 5 V1 and V2

< ロ > < 同 > < 三 > < 三 > <

3

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Schur's Lemma

Vanel WEOF 6) and If irred rep cl:V->W is a G-linear. D l'is eigher an isomorphism or the Zeo map. 2); f V=W then Y= X. Id forgone ZeB. 1) kerlsvhep of V, Im Y subrep of W. 2). Neigenvalue. (Y-775) sebrep of V.

▲□▶▲圖▶▲필▶▲필▶ _ 필

SQ (~

15/33

Irreducible Representations as Building Blocks

fide A representation V of G is **completely reducible**, i.e. given a subrepresentation U of V, there is a subrepresentation W of V such that $V = U \oplus W$. Pf; V = UEW as a vs. $T_o: V = V$ projection.

◆□▶ ◆□▶ ▲≡▶ ▲≡▶ = ∽) ♀ (?)

Proof Continued
$$T_{0}: V \rightarrow U$$
.
 $V = U \in W$ $T(V) = \frac{1}{161} \leq g \cdot (T_{0}(g \cdot V))$
 g

Can check that $W = \ker \pi$ works.

(1) TT is a projection of to
$$U$$
.
 $TT(u) = \overline{161} \sum_{geb}^{1} g \cdot (T_0(g', u))$
 $g_eb \cdot f \cdot (g \cdot (g', u))$
 $= \overline{161} \sum_{geb}^{1} h \cdot (g \cdot (g', u))$
 $= \overline{161} \sum_{geb}^{1} h \cdot (g \cdot (g', u))$
 $= \overline{161} \sum_{geb}^{1} h \cdot (g \cdot (g', u))$
 $= \overline{161} \sum_{geb}^{1} h \cdot (g \cdot (g', u))$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

うくで

17 / 33

$$\begin{aligned} & \textcircled{O} \ W = \text{ker TT} \quad \text{invariant} \quad \text{inder } G_{-} \\ & w \in \text{ker TT}, \quad h \cdot w \in \text{ker TT}, \quad \text{the } G_{-} \\ & \texttt{T}(h \cdot w) = \frac{1}{1G_{-}} \quad \underbrace{Sh^{+}J_{-}}_{g \in G} \cdot (\texttt{TT}_{o} \left(\frac{1}{g} \cdot (h \cdot w) \right) \\ & = h \cdot \frac{1}{1G_{-}} \quad \underbrace{S_{-}}_{g \in G} \left(\frac{1}{f_{-}} \cdot \frac{1}{g} \cdot (\prod_{-} \left(\frac{1}{h} \cdot \frac{1}{g} \right) \cdot w \right) \\ & = h \cdot \frac{1}{1G_{-}} \quad \underbrace{S_{-}}_{g \in G} \quad \underbrace{f_{-}}_{k \in G} \left(\frac{1}{h} \cdot \frac{1}{w} \right) \\ & = h \cdot \frac{1}{1G_{-}} \quad \underbrace{S_{-}}_{k \in G} \quad \underbrace{f_{-}}_{k \in G} \left(\frac{1}{h} \cdot \frac{1}{w} \right) \\ & = h \cdot 0 = 0 \\ & V = W \oplus U_{-}. \end{aligned}$$

Putting it all together (and gossing over some details)

Theorem

Any representation V is a direct sum of irreducible representations and can write

$$V = \bigoplus_i V_i^{\oplus n_i}$$

3

 $\mathcal{A} \mathcal{A} \mathcal{A}$

< ∃ >

< 47 ▶

Table of Contents

- 1 What are Representations?
- 2 Classification?
- 3 Irreducible Representations
- 4 Which representations are irreducible?
 - 5 Characters
- 6 Subgroups

< ロ > < 同 > < 三 > < 三 >

3

SQ (~

Question: Is the following representation irreducible?

 $G = S_3, V = \mathbb{C}^3$ with basis $\{e_1, e_2, e_3\}$, (Permutation representation)

$$V = R_1 + R_2 + R_3$$

 $U = Span \{V\}$. G(V) trivial.
 $V = UOW$
 $T = 100W$
 $T = 100W$

Representations of Finite Groups: The Basics September 9, 2020 20 / 33

Table of Contents

- 1 What are Representations?
- 2 Classification?
- 3 Irreducible Representations
- 4 Which representations are irreducible?
- 5 Characters

< ロ > < 同 > < 三 > < 三 >

3

SQ (~

Definition

Vasepof E. Xv tunction Det : $\chi_{v}: G \longrightarrow \mathbb{C}$ $g \longmapsto Tr(g|v),$ what are eigenvalues of "g"? Why? $\chi_v(\bar{q}hq) = \chi_v(h)$ observation; Class Function

September 9, 2020 22 / 33

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Let's compute some characters

- Let $G = S_3$ $\int (g)^2 [1]$
- $U = \mathbb{C}$ with trivial action.

$$\chi_{h}(g) = 1 \quad \forall g \in G,$$

2 $U' = \mathbb{C}$ with alternating action. $f(g) = \sum_{y \in Q} \int \int \chi_{y'}(g) = \sum_{y \in Q} \int \int f(g) \int f(g) dg$

◆□▶ ◆□▶ ▲三▶ ▲三▶ 三 ���

Character of Permutation Representation

GCX, V= ZexIxeX3. Xv(g) = # of etts in X fixed by g $V = C^3$ basés $\{e_1, e_2, e_3\}$, $G = S_3$ $\chi_{v}(u) = 3$, $\chi_{v}(u) = 1$, $\chi_{v}(u) = 0$ V = UOW $X_{v}(g) = X_{u}(g) + X_{w}(g)$. trivial - $\chi_{w}((1)) = 2$, $\chi_{w}((2)) = 0$, $\chi_{w}((123)) = -1$

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\mathcal{A} \mathcal{A} \mathcal{A}$

24 / 33

All of this information in a table

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

3

 $\mathcal{A} \mathcal{A} \mathcal{A}$

A Hermitian Inner Product

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のへで

Where is this coming from?

Representations of Finite Groups: The Basics September 9, 2020 27 / 33

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● 今 Q @

One cool consequence

 M_{v} is irred as report 6 iff $(X_{v}, X_{v}) = 1$. $\chi_{w}(1) = 2$, $\chi_{w}(1) = 0$, $\chi_{w}(12) = 0$, $\chi_{w}(123) = -1$ $(X_w, X_w) = \frac{1}{6} ((1)(2)^2 + 3(6)2 + 2(-1)^2)$ = 1 W is îrred.

JQ (~