Representations of Finite Groups: The Basics

September 9, 2020

Table of Contents

(1) What are Representations?
(2) Classification?
(3) Irreducible Representations
4) Which representations are irreducible?
(5) Characters
(6) Subgroups

Big Picture G gp finite.
$G \longrightarrow X$ set,
 id $\cdot x=x$

$$
g \cdot(h \cdot x)=\operatorname{gh} h \cdot x
$$

- orbit-stavalizer
- The centers of Regroups ard nontrivial.

Changing $X \rightarrow V \quad$ vs.

$\varphi:$

livens
Anoth

Another View

$$
\begin{aligned}
& V \quad \text { v.s. } \mathbb{C} \\
& \text { grop hom }: G \longrightarrow G(V)
\end{aligned}
$$

(v, f) is arep of G.

Examples

The Regular Representation is Special
$\underset{\text { regular }}{\text { rep }} \rightarrow V$ on which G acts linearly, also have algebra structure on V.

$$
\left(\sum_{g} a_{g} e_{g}\right)\left(\sum_{g} b_{g} e_{g}\right)=\sum_{g}\left(\sum_{h k=g} a_{n} a_{k}\right) e_{g}
$$

$$
e_{g} e_{n}=e_{g h}
$$

$\mathbb{C} G, \mathbb{C}[G]$ group-algelora,
over \mathbb{C}.

Even More Examples (better ones)
$G=S_{3}$
(i) Trivial rep.

$$
\begin{aligned}
u=\mathbb{C}, \quad f: G & \rightarrow G L(u) \\
g & \mapsto[I]
\end{aligned}
$$

(2) Alternating rep.

$$
\begin{aligned}
u^{\prime}=\mathbb{C}, f: G & \rightarrow G(u) \\
g & \mapsto[\operatorname{sg}(g)] .
\end{aligned}
$$

(1), (123)
(12) 4 not trivial.
S_{3} Examples Continued...
(3) Permutation rep. $S_{3} \propto X=\{1,2,3\}$

$$
\begin{aligned}
& W=\mathbb{C}^{3} \quad \text { basis }\left\{e_{1}, e_{2}, e_{3}\right\} . \\
& \rho: G \rightarrow G L(w) \\
& g\left(e_{1}\right)=e_{g(1)} \\
& g \cdot\left(z_{1}, z_{2}, z_{3}\right)=\left(z_{g^{-1}(1)}, z_{g^{-1}(2)}, \exists_{g^{-1}(3)}\right),
\end{aligned}
$$

Table of Contents

(1) What are Representations?
(2) Classification?
(3) Irreducible Representations
4) Which representations are irreducible?
(5) Characters
(6) Subgroups

Motivating Problem
What are "all" rep of a group G ?

- up to isomorphism.

$$
\begin{array}{cl}
V, W & V \xrightarrow[G]{\varphi} W \\
\varphi(g \cdot v)=g \cdot \varphi(v), & g \underset{\longrightarrow}{G} \downarrow .
\end{array}
$$

- Karl, Iml, corker φ. all rep of G as well.

Still Some Redundancy

Consider our previous example, the trivial representation of S_{3} :

$$
\begin{aligned}
& G=S_{3}, U=\mathbb{C}, \rho: G \rightarrow G L(U) \text { where } \rho(g)=[1] . \\
& \text { - } V_{1}=\mathbb{R}^{2} \text { and } f: G \rightarrow G L\left(U_{1}\right) \\
& g \mapsto\left[\begin{array}{lll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& V_{1}=u \oplus U . \\
& V_{2}=\mathbb{C}^{2} \text { and } f: G \rightarrow G\left(V_{2}\right)^{3} \\
& g \mapsto\left[\begin{array}{cc}
1 & 6 \\
0 & \operatorname{sgn}(g)
\end{array}\right] \text {. } \\
& v_{2}=U \oplus U^{\prime}
\end{aligned}
$$

Table of Contents

(1) What are Representations?
(2) Classification?
(3) Irreducible Representations
4) Which representations are irreducible?
(5) Characters
(6) Subgroups

Definitions
V rep of E.

- subrep $W \subset V$ (1) subspace
$o W \subset W$
(2) Invariant under action of G.
- V is irred. if $V \neq 0$ ane has no solo rep besides oo

$$
U \subset V_{1} \text { and } V_{2} \text {. }
$$ and V,

Schur's Lemma
If inced rep V and W Goo G) and $\varphi: V \rightarrow W$ is a G-linear.

1) φ is either an ismoupphion or the Zero map.
2) if $V=W$ then $\varphi=\lambda$. Id forgone $\lambda \in \mathbb{B}$.
3) Kerf φ surnep of $V, \operatorname{Im} \varphi$ sulterep of W s
2). λ eigenvalue. ger $(\varphi-\lambda I d)$ selorep of V.

Irreducible Representations as Building Blocks

A representation V of G is completely reducible, ie. given a subrepresentation U of V, there is a subrepresentation W of V such that $V=U \oplus W$.
pf: $V=U \not W^{\prime}$ as a US.
$\pi_{0}: V \rightarrow U \quad$ projection.
"averaging trick"

$$
\pi: V \rightarrow V
$$

$$
V \rightarrow \frac{1}{l G l} \sum_{g_{G G}} g \cdot\left(\pi_{0}\left(g^{-1} \cdot v\right)\right)
$$

Proof Continued

$$
{ }^{1} \pi_{0}: v \rightarrow u, ~ \frac{1}{|G|} \sum_{g} g \cdot\left(\pi_{0}(\vec{g} \cdot v)\right)
$$

Can check that $W=\operatorname{ker} \pi$ works.
(1) π is a projection shoo u.

$$
\begin{aligned}
\pi(u) & =\frac{1}{|G|} \sum_{g_{E} b} g \cdot\left(\pi_{0}\left(g^{-1} \cdot u\right)\right) \\
& =\frac{1}{|G|} \sum_{g \in G} u \cdot\left(g^{-1} \cdot u\right) \\
& =\frac{|G| u}{|G|}
\end{aligned}
$$

(2) $W=\operatorname{ker} \pi$ invariant unde, G,
we kerा, $h \cdot w \in$ ker $T, \forall h \in G$.

$$
\begin{aligned}
& \left.\pi(h \cdot \omega)=\frac{1}{|G|} \sum_{g G G} \tilde{\sigma}^{\omega} \cdot \mathrm{H}\right) g \cdot\left(\pi_{0}\left(g^{-1}(h \cdot \omega)\right)\right) \\
& =h \cdot \frac{1}{G 1} \sum_{g \in G}\left(h^{-1} g\right) \cdot\left(\Pi _ { 0 } \left(\underline{\left.\left.\left(h^{-1} g\right)^{-1} \cdot w\right)\right)}\right.\right. \\
& =h \cdot \frac{1}{|G|} \cdot \sum_{k \in G} k_{k}\left(\pi_{0}\left(\mu^{-1} \cdot \underline{w}\right)\right) \\
& =h \cdot 0=0 \\
& V=W \Theta U .
\end{aligned}
$$

Putting it all together (and gossing over some details)

Theorem
Any representation V is a direct sum of irreducible representations and can write

$$
V=\bigoplus_{i} v_{i}^{\oplus n_{i}}
$$

* Schorl's lemmas rep.

Table of Contents

(1) What are Representations?
(2) Classification?
(3) Irreducible Representations

4 Which representations are irreducible?
(5) Characters
(6) Subgroups

Question: Is the following representation irreducible?
$G=S_{3}, \quad V=\mathbb{C}^{3}$ with basis $\left\{e_{1}, e_{2}, e_{3}\right\}$, (Permutation representation)

$$
\begin{aligned}
& v=l_{1}+l_{2}+l_{3} \\
& u=\operatorname{span}\{V\} \text {. } \\
& G \curvearrowright U \text { trial. } \\
& V=U \oplus W \quad *_{i} \text { is } W \text { ire? } \\
& 3 \text { dimil } l_{\text {dim'l }} 2 \text { dimil }
\end{aligned}
$$

Table of Contents

(1) What are Representations?
(2) Classification?
(3) Irreducible Representations
4) Which representations are irreducible?
(5) Characters
(6) Subgroups

Definition
Def: V a sep of $G . X_{v}$ function

$$
\begin{aligned}
\chi_{v}: G & \longrightarrow \mathbb{P} \\
g & \mapsto \operatorname{Tr}(g / v)
\end{aligned}
$$

Why? what are eigenvalues of " g "?
observation: $\chi_{v}\left(g^{-1} h g\right)=\chi_{v}(h)$
class function

Let's compute some characters

Let $G=S_{3}$

$$
f(g)=[1]
$$

(1) $U=\mathbb{C}$ with trivial action.

$$
X_{n}(g)=1 \quad \forall g_{e} G
$$

(2) $U^{\prime}=\mathbb{C}$ with alternating action.

$$
\begin{aligned}
f(g) & =[\operatorname{sgn}(g)] \\
X_{u^{\prime}}(g) & =\operatorname{sgn}(g) \cdot \forall g \in G
\end{aligned}
$$

Character of Permutation Representation

$$
G\left(X, \quad V=\left\{e_{x} \mid x \in X\right\}\right. \text {. }
$$

$X_{v}(g)=\#$ of efts in X fixed by g

$$
V=\mathbb{C}^{3} \quad \text { basis } \quad\left\{e_{2}, e_{2}, e_{3}\right\} \quad, G=S_{3} .
$$

$$
\begin{aligned}
& \left.X_{v}((1))=3, X_{v}((12))=1, X_{v}(123)\right)=0 \\
& V=\underset{\text { divial }}{u \oplus W} \quad X_{v}(g)=\chi_{\underline{u}}(g)+\chi_{\omega}(g) \text {. } \\
& \left.X_{w}((1))=2, X_{w}((12))=0, X_{w}(123)\right)=-1
\end{aligned}
$$

All of this information in a table

$$
X_{V}\left(i d_{G}\right)=\operatorname{dim} V .
$$

A Hermitian Inner Product

$$
\begin{aligned}
& \mathbb{C}_{c \text { coss }}(\epsilon) \\
& (\alpha, \beta)=\frac{1}{|G|} \sum_{g \in G} \overline{\alpha(g)} \beta(g)
\end{aligned}
$$

Ex: Trivial rep U of S_{3}.

$$
\begin{aligned}
\left(x_{n}, x_{n}\right) & \left.=\frac{1}{6}(\operatorname{cis}(x) 1)+3(1)(1)+2(1)(1)\right) \\
& =1
\end{aligned}
$$

Where is this coming from?

One cool consequence

$$
\left.\begin{array}{l}
\left\{\begin{array}{r}
V \text { is irred as rep of } G \text { iff } \\
\left(X_{v}, X_{V}\right)=1
\end{array}\right. \\
\left.X_{w}((1))=2, X_{w}(1+2)\right)=0, X_{\omega}((123))=-1 \\
\left(X_{w}, X_{\omega}\right)
\end{array}=\frac{1}{6}\left((1)(2)^{2}+3(0)+2(-1)^{2}\right)\right\}
$$

