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Intersection



What is SLn?

SL2(C) =

{(
a b
c d

)
∈ M2(C) : ad − bc = 1

}
.

For any commutative ring R and n ≥ 1, SLn(R) is the set of
n × n matrices of determinant 1.

The determinant is a polynomial in the entries x11, x12, . . . , xnn
of the matrix. So SLn(R) is the set of solutions to

det(x11, x12, . . . , xnn) = 1.



Review of Varieties

k = k

Let An be the set kn with the Zariski topology: for every ideal
I ⊆ k[x1, . . . , xn], the set

V (I ) = {p ∈ An : f (p) = 0 for all f ∈ I}

is closed.

Check: this is really a topology.



Zariski Topology

V (y − x3) ⊆ A2 V (xy) ⊆ A2



Ideals and Closed Subsets

We can map

{ideals of k[x1, . . . , xn]} → {closed subsets of An}
I 7→ V (I )

and

{subsets of An} → {ideals of k[x1, . . . , xn]}
S 7→ I (S)

where

I (S) = {f ∈ k[x1, . . . , xn] : f (s) = 0 for all s ∈ S}.



Hilbert’s Nullstellensatz (Corollary)

There is a bijective correspondence

{radical ideals of k[x1, . . . , xn]} ↔ {closed subsets of An}
I 7→ V (I )

I (S)←[ S

An ideal I ⊆ A is a radical ideal if
I =
√
I = {f ∈ A | f n ∈ I for some n > 0}.

Note the above correspondence is order-reversing with respect
to inclusion.



Correspondence in An

0←→ An

radical ideal←→ closed subset

prime ideal←→ irreducible closed subset

maximal ideal←→ point

k[x1, . . . , xn]←→ ∅



Affine Varieties

Definition. An affine variety is an irreducible closed subset of An.

Hartshorne’s book assumes irreducible. Not all authors do.

Example: V (y − x2) ⊆ A2 is an affine variety.

A quasi-affine variety is an open subset of an affine variety.



Projective Varieties

Recall the definition of projective space Pn.

As a set, Pn = (An+1 \ {0})/ ∼ where

(a0, . . . , an) ∼ (λa0, . . . , λan) for λ ∈ k×.

Equivalently, it’s the set of lines through the origin in An+1.

Topology: the closed subsets are the zero sets of collections of
homogeneous polynomials in k[x0, . . . , xn].

Note, the space Pn has an open cover by n + 1 copies of An:
identify the subset {(a0, . . . , an) ∈ Pn | ai = 0} with An by
setting ai = 1.

A projective variety is an irreducible closed subset of Pn. A
quasi-projective variety is an open subset of a projective variety.



Varieties

Definition. A variety is an affine variety, quasi-affine variety,
projective variety, or quasi-projective variety.

Recall, we’re working over a fixed algebraically closed field k .



The Ring O(X )

Every variety X has an associated ring O(X ) called the ring of
regular functions.

X ⊆ An: a function f : X → k is a regular function if it is
locally of the form g

h for polynomials g , h ∈ k[x1, . . . , xn].

X ⊆ Pn: a function f : X → k is a regular function if it is
locally of the form g

h for homogeneous polynomials
g , h ∈ k[x0, . . . , xn] of the same degree.

Check that these form a ring.

Note: If X is a variety and U ⊆ X is an open subset, there is an
induced ring homomorphism O(X )→ O(U) by f 7→ f |U .



O(X ) and A(X )

Let X be an affine variety.

The ring A(X ) := k[x1, . . . , xn]/I (X ) is called the coordinate
ring of X . It is a finitely generated k-algebra and an integral
domain.

Note: every finitely-generated integral domain over k is of the
form k[x1, . . . , xn]/I for some prime ideal I .
If we don’t assume X is irreducible, then I (X ) may not be
prime, but it is radical. In that case, A(X ) may not be a
domain, but it is reduced (no nontrivial nilpotents).

One can show that O(X ) = A(X ).

To see ⊇, check that an element f + I ∈ A(X ) uniquely
determines a polynomial function f : X → k .



O(X ) and the Coordinate Ring

If X is an affine variety, then on the open subset

Xf := {p ∈ An : f (p) 6= 0},

we have O(Xf ) = A(X )f , where A(X )f is the localization of
the ring A(X ) at f .

In the projective case O(X ) works differently.

There is also a projective version of the coordinate ring.



Morphism of Varieties

A map ϕ : X → Y is a morphism of varieties if

ϕ is continuous, and

for every open subset V ⊆ Y and every regular function
f : V → k, the function

f ◦ ϕ : ϕ−1(V )→ k

is regular.

This allows us to define the category of varieties.



Equivalence of Categories #1
Finitely Generated k-algebras that are Integral Domains

We have an equivalence of categories{
finitely generated

integral domains over k

}
←→ {affine varieties over k}

where
k[x1, . . . , xn]/I ↔ V (I )

and
ϕ∗ : O(Y )→ O(X )↔ ϕ : X → Y ,

with ϕ∗(g) = g ◦ ϕ.



Beyond Varieties

Using the above equaivalence of categories, we can apply
geometric reasoning to study a specific class of rings: finitely
generated domains over an algebraically closed field.

SLn(C) is a variety. SLn(Z) is not.

We would like to apply our geometric tools to study other
rings and fields, e.g. Z, Q, Qp, local rings, Dedekind
domains...



Intersection



Beyond Varieties

Can we find some useful category to fill in the blank?

{commutative rings} ←→ {???}



Schemes

A scheme is a pair
(X ,O)

where X is a topological space and O is a sheaf of rings on X ,
satisfying certain conditions.



The Topological Space SpecR

For any commutative ring R, define

SpecR = {p ⊆ R | p is a prime ideal}.

Topology: the closed subsets of SpecR are the sets of the form

V (a) = {p ∈ SpecR | a ⊆ p}

for ideals a ⊆ R.



Cool Picture of Spec k[x , y ]



Sheaves

Analogy to keep in mind: “functions on an open set.”

If X is a variety, then for each open subset U ⊆ X , we have a
ring O(U) = the ring of regular functions on U.

If V ⊆ U ⊆ X then there is a “restriction” map
O(U)→ O(V ) by f 7→ f |V .



Sheaves

Let X be a topological space. A sheaf of rings O on X is an
assignment

U 7→ O(U)

giving a ring O(U) for each open subset U ⊆ X , together with ring
homomorphisms

ρU,V : O(U)→ O(V ) for V ⊆ U,

satisfying the following conditions.



Sheaves

The “restriction” maps ρU,V : O(U)→ O(V ) satisfy:

1 ρU,U = idO(U).

2 ρV ,W ◦ ρU,V = ρU,W for all W ⊆ V ⊆ U.

3 Locally zero implies zero: If U =
⋃

i Vi is an open cover and
s ∈ O(U) such that ρU,Vi

(s) = 0 for all i , then s = 0.

4 Gluing: If U =
⋃

i Vi is an open cover and si ∈ O(Vi ) such
that

ρVi ,Vi∩Vj
(si ) = ρVj ,Vi∩Vj

(sj) for all i , j ,

then there exists an element s ∈ O(U) such that ρU,Vi
(s) = si

for all i .



The Structure Sheaf on SpecR

Define a sheaf on SpecR, called the structure sheaf, by setting

O(U) =

s : U →
∐
p∈U

Rp

∣∣∣∣∣∣ s(p) ∈ Rp for all p
and s is locally a quotient

 .

That is, for every p ∈ U there exists a neighborhood V ⊆ U of p
and elements g , h ∈ R such that s(q) = g

h ∈ Rq for every q ∈ V .

This looks like the definition of regular functions.

But instead of mapping to k, we map each p into Rp.

Important fact: O(SpecR) = R.



The Structure Sheaf on SpecR

Another way to think about the structure sheaf of X = SpecR:

The open subsets of X are generated by the subsets

Xf = {p ∈ SpecR | f 6∈ p}.

The structure sheaf is determined by O(Xf ) = Rf and
localization maps Rf → Rfg = Rg for Xf ⊇ Xg .



Affine Schemes

Definition. An affine scheme is a pair

(SpecR,OSpecR)

where R is a commutative ring and OSpecR is the structure sheaf
on SpecR.

Notation: often SpecR means the pair (SpecR,OSpecR).



Schemes

Definition-ish. A scheme is a pair

(X ,OX )

where X is a topological space, OX is a sheaf of rings on X , and
(X ,OX ) that locally looks like an affine scheme.

That is, X is the union of some open sets Ui such that
(Ui ,OX |Ui

) is isomorphic to (SpecRi ,OSpecRi
) for some Ri .



Stalks

X a scheme, p ∈ X

The stalk OX ,p is the direct limit

OX ,p = lim−→
p∈U
OX (U).

The ring OX ,p consists of elements s ∈ OX (U) for
neighborhoods U of p up to the equivalence s1 ∼ s2 if
ρU1,U1∩U2(s1) = ρU2,U1∩U2(s2).

By definition there’s a map OX (U)→ OX ,p for any U 3 p.

OX ,p is called the “local ring of X at p.” It is a local ring.



Morphism of Schemes

A morphism of schemes is a pair (ψ,ψ#), where

ψ : X → Y is continuous

and ψ# is a map of sheaves OY → ψ∗OX ,

that is, a collection of ring homomorphisms
ψ#
U : OY (U)→ OX (ψ−1U) for open U ⊆ Y commuting with

restriction maps,

such that ψ# induces a local homomorphism OY ,ψ(p) → OX ,p on
the stalks for each p ∈ X .



Morphisms of Affine Schemes

Prop. There is a one-to-one correspondence between morphisms of
affine schemes and ring homomorphisms.

A morphism (ψ,ψ#) : SpecR → SpecT defines a ring

homomorphism ψ#
SpecT : T → R.

Conversely a ring homomorphism ϕ : T → R defines a
continuous map SpecR → SpecT by p 7→ ϕ−1(p).

Defining ψ# from ϕ is a little more work.



Morphisms of Affine Schemes

Warning: a morphism of schemes is a pair (ψ,ψ#). It is not
enough to know ψ alone!

Example: R = Fpn .

Ring homomorphism ϕ : R → R by a 7→ ap.

The corresponding map of topological spaces is the identity:

ψ : SpecR → SpecR

(0) 7→ ϕ−1((0)) = (0)

But ψ#
SpecR = ϕ is not the identity.



Equivalence of Categories #2
Commutative Rings

This gives us our equivalence of categories:

{commutative rings} ↔ {affine schemes}
R ↔ SpecR

ϕ↔ (ψ,ψ#)



SLn(R)

SLn(R) = V (det(xij)− 1) where the xij are the coordinates of
the matrix.

SLn(R) ∼= Spec(R[x11, x12, . . . , xnn]/(det(xij)− 1)).

SLn is a functor from rings to groups.



Generic Points

Example: suppose we want to show a certain property, e.g.
smoothness, holds at almost every point on some variety or
scheme, e.g. V (y2 − x3 + x).

We can try to make an argument using indeterminates that
satisfy some equations.

A “generic point” in indeterminates, like (x , y), is not really a
point in the world of varieties.

But with schemes, these can literally be points.



Generic Points



Generic Points

Example: suppose we want to show a certain property, e.g.
smoothness, holds at almost every point on some variety or
scheme, e.g. V (y2 − x3 + x).

We can try to make an argument using indeterminates that
satisfy some equations.

A “generic point” in indeterminates, like (x , y), is not really a
point in the world of varieties.

But with schemes, these can literally be points.

We have a point p = (y2 − x3 + x) ∈ Spec k[x , y ], and its
closure is the elliptic curve defined by that equation (p is
dense in the curve).

We can learn about the curve by looking at p.



Scheme-Theoretic Intersection

X

Y

X ∩ Y = Spec k[ε]/(ε2)

Z

W

Z ∩W = Spec k
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