WHY STUDY SCHEMES?

Tamar Lichter Blanks

Rutgers University Graduate Algebra and Representation Theory Seminar

September 2, 2020

INTERSECTION

WHAT IS SL_n ?

•
$$\mathsf{SL}_2(\mathbb{C}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathsf{M}_2(\mathbb{C}) \colon \mathit{ad} - \mathit{bc} = 1 \right\}.$$

- For any commutative ring R and n ≥ 1, SL_n(R) is the set of n × n matrices of determinant 1.
- The determinant is a polynomial in the entries $x_{11}, x_{12}, ..., x_{nn}$ of the matrix. So $SL_n(R)$ is the set of solutions to

$$\det(x_{11}, x_{12}, \ldots, x_{nn}) = 1.$$

REVIEW OF VARIETIES

- $k = \overline{k}$
- Let \mathbb{A}^n be the set k^n with the Zariski topology: for every ideal $I \subseteq k[x_1, \ldots, x_n]$, the set

$$V(I) = \{p \in \mathbb{A}^n \colon f(p) = 0 \text{ for all } f \in I\}$$

is closed.

Check: this is really a topology.

ZARISKI TOPOLOGY

IDEALS AND CLOSED SUBSETS

We can map

$$\{ ext{ideals of } k[x_1,\ldots,x_n]\} o \{ ext{closed subsets of } \mathbb{A}^n\}$$

 $I\mapsto V(I)$

 and

$$\{ \text{subsets of } \mathbb{A}^n \} \to \{ \text{ideals of } k[x_1, \dots, x_n] \}$$
$$S \mapsto I(S)$$

where

$$I(S) = \{ f \in k[x_1, \ldots, x_n] \colon f(s) = 0 \text{ for all } s \in S \}.$$

There is a bijective correspondence

 $\{ \text{radical ideals of } k[x_1, \dots, x_n] \} \leftrightarrow \{ \text{closed subsets of } \mathbb{A}^n \}$ $I \mapsto V(I)$ $I(S) \leftarrow S$

- An ideal $I \subseteq A$ is a radical ideal if $I = \sqrt{I} = \{f \in A \mid f^n \in I \text{ for some } n > 0\}.$
- Note the above correspondence is order-reversing with respect to inclusion.

Correspondence in \mathbb{A}^n

$$0 \longleftrightarrow \mathbb{A}^n$$

radical ideal \longleftrightarrow closed subset prime ideal \longleftrightarrow irreducible closed subset maximal ideal \longleftrightarrow point $k[x_1, \ldots, x_n] \longleftrightarrow \emptyset$ <u>Definition</u>. An *affine variety* is an irreducible closed subset of \mathbb{A}^n .

- Hartshorne's book assumes irreducible. Not all authors do.
- Example: $V(y x^2) \subseteq \mathbb{A}^2$ is an affine variety.

A quasi-affine variety is an open subset of an affine variety.

Recall the definition of projective space \mathbb{P}^n .

• As a set, $\mathbb{P}^n = (\mathbb{A}^{n+1} \setminus \{0\}) / \sim$ where

$$(a_0,\ldots,a_n)\sim (\lambda a_0,\ldots,\lambda a_n)$$
 for $\lambda\in k^{\times}$.

Equivalently, it's the set of lines through the origin in \mathbb{A}^{n+1} .

- Topology: the closed subsets are the zero sets of collections of homogeneous polynomials in *k*[*x*₀,...,*x*_n].
- Note, the space Pⁿ has an open cover by n+1 copies of Aⁿ: identify the subset {(a₀,..., a_n) ∈ Pⁿ | a_i = 0} with Aⁿ by setting a_i = 1.

A projective variety is an irreducible closed subset of \mathbb{P}^n . A quasi-projective variety is an open subset of a projective variety.

VARIETIES

<u>Definition</u>. A *variety* is an affine variety, quasi-affine variety, projective variety, or quasi-projective variety.

• Recall, we're working over a fixed algebraically closed field k.

Every variety X has an associated ring $\mathcal{O}(X)$ called the ring of regular functions.

- X ⊆ Aⁿ: a function f: X → k is a regular function if it is locally of the form ^g/_h for polynomials g, h ∈ k[x₁,...,x_n].
- X ⊆ ℙⁿ: a function f: X → k is a regular function if it is locally of the form ^g/_h for homogeneous polynomials g, h ∈ k[x₀,...,x_n] of the same degree.
- Check that these form a ring.

Note: If X is a variety and $U \subseteq X$ is an open subset, there is an induced ring homomorphism $\mathcal{O}(X) \to \mathcal{O}(U)$ by $f \mapsto f|_U$.

Let X be an affine variety.

- The ring $A(X) := k[x_1, ..., x_n]/I(X)$ is called the coordinate ring of X. It is a finitely generated k-algebra and an integral domain.
 - Note: *every* finitely-generated integral domain over k is of the form k[x₁,..., x_n]/I for some prime ideal I.
 - If we don't assume X is irreducible, then I(X) may not be prime, but it is radical. In that case, A(X) may not be a domain, but it is reduced (no nontrivial nilpotents).
- One can show that $\mathcal{O}(X) = A(X)$.
 - To see \supseteq , check that an element $f + I \in A(X)$ uniquely determines a polynomial function $f: X \to k$.

• If X is an affine variety, then on the open subset

$$X_f := \{ p \in \mathbb{A}^n \colon f(p) \neq 0 \},\$$

we have $\mathcal{O}(X_f) = A(X)_f$, where $A(X)_f$ is the localization of the ring A(X) at f.

- In the projective case $\mathcal{O}(X)$ works differently.
- There is also a projective version of the coordinate ring.

A map $\varphi \colon X \to Y$ is a morphism of varieties if

- $\blacksquare \ \varphi$ is continuous, and
- for every open subset $V \subseteq Y$ and every regular function $f: V \rightarrow k$, the function

$$f \circ \varphi \colon \varphi^{-1}(V) \to k$$

is regular.

This allows us to define the category of varieties.

Equivalence of Categories #1

FINITELY GENERATED k-ALGEBRAS THAT ARE INTEGRAL DOMAINS

We have an equivalence of categories

 $\left\{ \begin{array}{c} \text{finitely generated} \\ \text{integral domains over } k \end{array} \right\} \longleftrightarrow \{ \text{affine varieties over } k \}$

where

$$k[x_1,\ldots,x_n]/I \leftrightarrow V(I)$$

and

$$\varphi_* \colon \mathcal{O}(Y) \to \mathcal{O}(X) \leftrightarrow \ \varphi \colon X \to Y,$$

with $\varphi_*(g) = g \circ \varphi$.

BEYOND VARIETIES

- Using the above equaivalence of categories, we can apply geometric reasoning to study a specific class of rings: finitely generated domains over an algebraically closed field.
- $SL_n(\mathbb{C})$ is a variety. $SL_n(\mathbb{Z})$ is not.
- We would like to apply our geometric tools to study other rings and fields, e.g. ℤ, ℚ, ℚ_p, local rings, Dedekind domains...

INTERSECTION

Can we find some useful category to fill in the blank? $\{\text{commutative rings}\}\longleftrightarrow\{???\}$

A scheme is a pair

(X,\mathcal{O})

where X is a topological space and O is a sheaf of rings on X, satisfying certain conditions.

For any commutative ring R, define

Spec $R = \{ \mathfrak{p} \subseteq R \mid \mathfrak{p} \text{ is a prime ideal} \}.$

Topology: the closed subsets of Spec R are the sets of the form

$$V(\mathfrak{a}) = \{\mathfrak{p} \in \operatorname{Spec} R \mid \mathfrak{a} \subseteq \mathfrak{p}\}$$

for ideals $\mathfrak{a} \subseteq R$.

COOL PICTURE OF Spec k[x, y]

Analogy to keep in mind: "functions on an open set."

- If X is a variety, then for each open subset $U \subseteq X$, we have a ring $\mathcal{O}(U)$ = the ring of regular functions on U.
- If $V \subseteq U \subseteq X$ then there is a "restriction" map $\mathcal{O}(U) \rightarrow \mathcal{O}(V)$ by $f \mapsto f|_V$.

Let X be a topological space. A sheaf of rings $\mathcal O$ on X is an assignment

 $U\mapsto \mathcal{O}(U)$

giving a ring $\mathcal{O}(U)$ for each open subset $U \subseteq X$, together with ring homomorphisms

$$\rho_{U,V} \colon \mathcal{O}(U) \to \mathcal{O}(V) \text{ for } V \subseteq U,$$

satisfying the following conditions.

- The "restriction" maps $\rho_{U,V} \colon \mathcal{O}(U) \to \mathcal{O}(V)$ satisfy:
 - $1 \ \rho_{U,U} = \mathsf{id}_{\mathcal{O}(U)}.$
 - $2 \rho_{V,W} \circ \rho_{U,V} = \rho_{U,W} \text{ for all } W \subseteq V \subseteq U.$
 - 3 Locally zero implies zero: If $U = \bigcup_i V_i$ is an open cover and $s \in \mathcal{O}(U)$ such that $\rho_{U,V_i}(s) = 0$ for all *i*, then s = 0.
 - 4 Gluing: If $U = \bigcup_i V_i$ is an open cover and $s_i \in \mathcal{O}(V_i)$ such that

$$\rho_{V_i,V_i\cap V_j}(s_i) = \rho_{V_j,V_i\cap V_j}(s_j)$$
 for all i, j ,

then there exists an element $s \in \mathcal{O}(U)$ such that $\rho_{U,V_i}(s) = s_i$ for all *i*.

Define a sheaf on Spec R, called the *structure sheaf*, by setting

$$\mathcal{O}(U) = \left\{ s \colon U o \coprod_{\mathfrak{p} \in U} R_\mathfrak{p} \; \middle| \; egin{array}{c} s(\mathfrak{p}) \in R_\mathfrak{p} ext{ for all } \mathfrak{p} \\ ext{ and } s ext{ is locally a quotient } \end{array}
ight\}.$$

That is, for every $\mathfrak{p} \in U$ there exists a neighborhood $V \subseteq U$ of \mathfrak{p} and elements $g, h \in R$ such that $s(\mathfrak{q}) = \frac{g}{h} \in R_{\mathfrak{q}}$ for every $\mathfrak{q} \in V$.

This looks like the definition of regular functions.

■ But instead of mapping to k, we map each \mathfrak{p} into $R_{\mathfrak{p}}$. Important fact: $\mathcal{O}(\operatorname{Spec} R) = R$. Another way to think about the structure sheaf of $X = \operatorname{Spec} R$:

■ The open subsets of *X* are generated by the subsets

$$X_f = \{ \mathfrak{p} \in \operatorname{Spec} R \mid f \notin \mathfrak{p} \}.$$

• The structure sheaf is determined by $\mathcal{O}(X_f) = R_f$ and localization maps $R_f \to R_{fg} = R_g$ for $X_f \supseteq X_g$.

Definition. An affine scheme is a pair

 $(\operatorname{Spec} R, \mathcal{O}_{\operatorname{Spec} R})$

where *R* is a commutative ring and $\mathcal{O}_{\text{Spec }R}$ is the structure sheaf on Spec *R*.

• Notation: often Spec *R* means the pair (Spec *R*, $\mathcal{O}_{\text{Spec }R}$).

Definition-ish. A scheme is a pair

 (X, \mathcal{O}_X)

where X is a topological space, \mathcal{O}_X is a sheaf of rings on X, and (X, \mathcal{O}_X) that locally looks like an affine scheme.

■ That is, X is the union of some open sets U_i such that (U_i, O_X|U_i) is isomorphic to (Spec R_i, O_{Spec R_i}) for some R_i.

STALKS

- $\blacksquare X$ a scheme, $\mathfrak{p} \in X$
- The stalk $\mathcal{O}_{X,\mathfrak{p}}$ is the direct limit

$$\mathcal{O}_{X,\mathfrak{p}} = \varinjlim_{\mathfrak{p} \in U} \mathcal{O}_X(U).$$

- The ring O_{X,p} consists of elements s ∈ O_X(U) for neighborhoods U of p up to the equivalence s₁ ~ s₂ if ρ_{U1}, _{U1}∩_{U2}(s₁) = ρ_{U2}, _{U1}∩_{U2}(s₂).
- By definition there's a map $\mathcal{O}_X(U) \to \mathcal{O}_{X,\mathfrak{p}}$ for any $U \ni \mathfrak{p}$.
- $\mathcal{O}_{X,\mathfrak{p}}$ is called the "local ring of X at \mathfrak{p} ." It is a local ring.

A morphism of schemes is a pair ($\psi, \psi^{\#}$), where

 $\psi \colon X \to Y$ is continuous

and $\psi^{\#}$ is a map of sheaves $\mathcal{O}_{Y} \rightarrow \psi_{*}\mathcal{O}_{X}$,

• that is, a collection of ring homomorphisms $\psi_U^{\#} : \mathcal{O}_Y(U) \to \mathcal{O}_X(\psi^{-1}U)$ for open $U \subseteq Y$ commuting with restriction maps,

such that $\psi^{\#}$ induces a local homomorphism $\mathcal{O}_{Y,\psi(\mathfrak{p})} \to \mathcal{O}_{X,\mathfrak{p}}$ on the stalks for each $p \in X$.

<u>Prop</u>. There is a one-to-one correspondence between morphisms of affine schemes and ring homomorphisms.

- A morphism (ψ, ψ[#]): Spec R → Spec T defines a ring homomorphism ψ[#]_{Spec T}: T → R.
- Conversely a ring homomorphism $\varphi \colon T \to R$ defines a continuous map Spec $R \to$ Spec T by $\mathfrak{p} \mapsto \varphi^{-1}(\mathfrak{p})$.
- Defining $\psi^{\#}$ from φ is a little more work.

Warning: a morphism of schemes is a pair $(\psi, \psi^{\#})$. It is not enough to know ψ alone!

- Example: $R = \mathbb{F}_{p^n}$.
- Ring homomorphism $\varphi \colon R \to R$ by $a \mapsto a^p$.
- The corresponding map of topological spaces is the identity:

$$\psi\colon\operatorname{\mathsf{Spec}} R o\operatorname{\mathsf{Spec}} R$$
 $(0)\mapsto arphi^{-1}((0))=(0)$

■ But $\psi_{\operatorname{Spec} R}^{\#} = \varphi$ is not the identity.

Equivalence of Categories #2

Commutative Rings

This gives us our equivalence of categories:

{commutative rings} \leftrightarrow {affine schemes} $R \leftrightarrow$ Spec R $\varphi \leftrightarrow (\psi, \psi^{\#})$

- SL_n(R) = V(det(x_{ij}) 1) where the x_{ij} are the coordinates of the matrix.
- $SL_n(R) \cong Spec(R[x_{11}, x_{12}, \dots, x_{nn}]/(det(x_{ij}) 1)).$
- SL_n is a functor from rings to groups.

Example: suppose we want to show a certain property, e.g. smoothness, holds at almost every point on some variety or scheme, e.g. $V(y^2 - x^3 + x)$.

- We can try to make an argument using indeterminates that satisfy some equations.
- A "generic point" in indeterminates, like (*x*, *y*), is not really a point in the world of varieties.
- But with schemes, these can literally be points.

Generic Points

Example: suppose we want to show a certain property, e.g. smoothness, holds at almost every point on some variety or scheme, e.g. $V(y^2 - x^3 + x)$.

- We can try to make an argument using indeterminates that satisfy some equations.
- A "generic point" in indeterminates, like (x, y), is not really a point in the world of varieties.
- But with schemes, these can literally be points.
- We have a point p = (y² x³ + x) ∈ Spec k[x, y], and its closure is the elliptic curve defined by that equation (p is dense in the curve).
- We can learn about the curve by looking at p.

Scheme-Theoretic Intersection

References

- For a standard reference: *Algebraic Geometry* by R. Hartshorne (1977)
- For intuition, deeper understanding, and cool examples: *The Geometry of Schemes* by D. Eisenbud and J. Harris (2000)
- Algebra folks in our department (thanks Danny and Lev!)