1. For each part, describe, in English, the set of points satisfied by the given equation in the indicated coordinate system. You should give a complete, concise, and clear English description; a graph and/or equation in rectangular coordinates is helpful but not sufficient.

 (a) \(\rho = 4y \) (spherical)
 (b) \(\varphi = \frac{\pi}{4} \) (spherical)
 (c) \(r = 5 \) (cylindrical)
 (d) \(r = 2\sec(\theta) \) (polar)
 (e) \(z = r^2 \) (cylindrical)
 (f) \(r^2 + z^2 = 16 \) (cylindrical)

2. For each part, describe the given set of points with an equation of the form \(z = f(r, \theta) \) for cylindrical coordinates or \(\rho = f(\theta, \varphi) \) for spherical coordinates.

 (a) the surface \(z = 3xy \) (cylindrical)
 (b) the sphere centered at the origin with radius 3 (spherical)
 (c) the sphere centered at the origin with radius 3 (cylindrical)
 (d) the cylinder \(y^2 + z^2 = 4 \) (cylindrical)
 (e) the upper part of the cone \(x^2 + y^2 = z^2 \) (cylindrical)
 (f) the plane \(z = 5 \) (spherical)

3. Find equations \(r = f(\theta, z) \) (cylindrical) and \(\rho = f(\theta, \varphi) \) (spherical) for the hyperboloid \(x^2 + y^2 = z^2 + 1 \). Do there exist points on the hyperboloid with \(\varphi = 0 \) or \(\varphi = \pi \)? Which values of \(\varphi \) occur for points on the hyperboloid? (A graph of the hyperboloid may help explain what is happening.)