Section 14.2: Limits and Continuity

What do we mean by

\[\lim_{(x,y) \to (a,b)} f(x,y) = L \]

In particular, what does the limit symbol mean?

In one-variable calculus, limits were much simpler...

\[\lim_{x \to c} f(x) = L \]

The point \(x \) can approach \(c \) only from two sides. How many ways can \((x, y)\) approach \((a, b)\)?
To say that

\[\lim_{(x, y) \to (a, b)} f(x, y) = L \]

means we get limit \(L \) along any path terminating at \((a, b)\).

*Most of the limit rules are still true.

1. \(\lim (f + g) = \lim f + \lim g \)
2. \(\lim (k f) = k \lim (f) \)

3. \(\lim (fg) = \lim (f) \cdot \lim (g) \)

4. \(\lim \left(\frac{f}{g} \right) = \frac{\lim (f)}{\lim (g)} \text{ } \text{ } \text{not } 0 \)

5. **Squeeze Theorem:**
 If \(f(x,y) \leq g(x,y) \leq h(x,y) \)
 and \(\lim (f) = \lim (h) = L \), then
 \(\lim (g) = L \) also.

Ex. 1

Calculate

\[\lim_{(x,y) \to (-2,1)} \frac{2x^2}{4x+y} \]

Solution:

Direct substitution.

\[= \frac{2(-2)^2}{4(-2)+1} = -\frac{8}{7} \]
Ex. 2
Calculate
\[\lim_{(x,y) \to (0,0)} \frac{x^3 (1 - \cos(y))}{y^2} \]

Solution:
\[= \lim_{(x,y) \to (0,0)} x^3 \cdot \lim_{(x,y) \to (0,0)} \frac{1 - \cos(y)}{y^2} \]
\[= \lim_{x \to 0} x^3 \cdot \lim_{y \to 0} \frac{1 - \cos(y)}{y^2} \]
\[= 0 \cdot \frac{1}{2} \]
\[= 0 \]

L'Hopital's Rule

Ex. 3
Calculate
\[\lim_{(x,y) \to P} f(x,y) \]
Contour lines of $f(x,y)$. Note that f is undefined at the point P.

Solution:

1. Along this path, all values of f are 1, so the limit is 1.
2. Along this path, all values of f are 5, so the limit is 5.

Since we get different limits along two different paths, the limit $\lim_{(x,y) \to P} f(x,y)$ does not exist.

Ex. 4

Solve the problem.
Calculate $\lim_{(x,y) \to Q} f(x,y)$.

(What limit is suggested by the contour lines?)

Solution:

Graph suggests limit is 4 since values of $f(x,y)$ approach 4 along any path.

(Note: the contours for this problem are not pathological as in previous example.)

Ex. 5

Show that $\lim_{(x,y) \to Q} x^2 = Q^2$.
\[
\lim_{(x,y) \to (0,0)} \frac{x}{x^2 + y^2}
\]
does not exist.

Solution:

Along \(y \)-axis \((x = 0)\):
\[
\lim_{(x,y) \to (0,0)} \frac{x^2}{x^2 + y^2} = \lim_{y \to 0} \frac{0}{0 + y^2} = 0
\]
along \(y \)-axis

Along \(x \)-axis \((y = 0)\):
\[
\lim_{(x,y) \to (0,0)} \frac{x^2}{x^2 + y^2} = \lim_{x \to 0} \frac{x^2}{x^2} = 1
\]
along \(x \)-axis

We get two different limits along two different curves, so limit does not exist.

Ex. 6

Determine whether
\[
\lim_{(x,y) \to (0,0)} \frac{x^3 y}{x^6 + y^2}
\]
exists.

Solution:

Along line \(y = mx \):

\[
\lim_{{(x,y) \to (0,0)}} \frac{x^3 y}{x^6 + y^2} = \lim_{{x \to 0}} \frac{x^3 (mx)}{x^6 + (mx)^2}
\]

along \(y = mx \)

\[
= \lim_{{x \to 0}} \left(\frac{mx^2}{{x}^4 + m^2} \right) = 0
\]

Along curves \(y = mx^2 \):

\[
\lim_{{(x,y) \to (0,0)}} \frac{x^3 y}{x^6 + y^2} = \lim_{{x \to 0}} \frac{x^3 (mx^2)}{x^6 + (mx^2)^2}
\]

along \(y = mx^2 \)

\[
= \lim_{{x \to 0}} \left(\frac{m x^3}{{x}^4 + m^2} \right) = 0
\]
\[
\lim_{{x \to 0}} \left(\frac{mx}{{x^2 + m^2}} \right) = 0
\]

Along \(y = mx^3 \):
\[
\lim_{{(x,y) \to (0,0)}} \frac{x^3y}{{x^6 + y^2}} = \lim_{{x \to 0}} \left(\frac{x^3 (mx^3)}{{x^6 + (mx^3)^2}} \right)
\]
along \(y = mx^3 \)
\[
= \lim_{{x \to 0}} \left(\frac{m}{{1 + m^2}} \right) = \frac{M}{{1 + m^2}}
\]

This limit depends on the particular curve \(y = mx^3 \). So the limit does not exist.

Ex. 7

Evaluate the limit
\[
\lim_{{(x,y) \to (0,0)}} \frac{xy^2}{{x^2 + y^2}}
\]
or show that it does not exist.

Solution:

For equations of two variables, we evaluate the limit along different paths to check for the existence of the limit.

1. **Path 1:** Along the line \(y = kx \),
\[
\lim_{{x \to 0}} \frac{xy^2}{{x^2 + y^2}} = \lim_{{x \to 0}} \frac{x(kx)^2}{{x^2 + (kx)^2}}
\]

2. **Path 2:** Along the parabola \(y = x^2 \),
\[
\lim_{{x \to 0}} \frac{x(x^2)^2}{{x^2 + (x^2)^2}}
\]

By evaluating these limits, we find that the limit depends on the path chosen, indicating that the limit does not exist.
To consider all possible paths, we swap to polar coordinates.

\[x = r \cos (\theta) \]
\[y = r \sin (\theta) \quad (r = f(\theta)) \]

If the path approaches origin, then \(r \to 0 \).

\[
\lim_{(x,y) \to (0,0)} \frac{xy^2}{x^2 + y^2} = \lim_{r \to 0} \frac{r^3 \cos(\theta) \sin(\theta)^2}{r^2}
\]

\[
= \lim_{r \to 0} \left(r \cos(\theta) \sin(\theta)^2 \right)
\]

remember that \(\theta = \Theta(r) \)

We use Squeeze Theorem. No matter how \(\Theta \) depends on \(r \),

\[|\cos(\theta)| \leq 1 \quad \text{and} \quad |\sin(\theta)| \leq 1 \]

So we have...

\[0 \leq |r\cos(\theta)\sin(\theta)^2| \leq |r| \cdot 1 \cdot 1 \leq r \]
So by Squeeze Theorem,

\[
\lim_{{r \to 0}} (0) \leq \lim_{{r \to 0}} |r \cos(\theta) \sin(\theta)^2| \leq \lim_{{r \to 0}} r
\]

\[
0 \leq \lim_{{r \to 0}} |r \cos(\theta) \sin(\theta)^2| \leq 0
\]

So we get

\[
\lim_{{r \to 0}} (r \cos(\theta) \sin(\theta)^2) = 0
\]